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Abstract

Context Knowledge of how environmental gradients

generate changes in community composition across

forest landscapes (b-diversity) represents a critical

issue in the era of global change, which exerts

especially powerful impacts by shifting disturbance

regimes.

Objectives We analyzed the response of tree com-

munities to increased disturbance rates that were

linked to European settlement at the temperate-boreal

interface of eastern Canada. We tested whether

disturbance has led to spatial homogenization or

heterogenization, and to decoupling or strengthening

of community-environment relationships.

Methods We used a reconstruction of pre-industrial

tree communities based on historical land survey

records (1854–1935), together with modern data, to

assess changes in tree b-diversity patterns. Then, b-

diversity was partitioned into fractions explained by

spatial (dbMEM) and environmental variables (lati-

tude, elevation, slope, drainage and surface deposits)

in order to assess changes in spatial structures and

community-environment relationships.

Results In pre-industrial times, environmental vari-

ables explained only a small proportion of b-diversity

since dominant taxa were present across the range of

environmental gradients, whereas habitat specialists

were very rare. Between pre-industrial and modern

times, our analysis highlights an increase in b-

diversity and the proportion of b-diversity that was

explained by environmental variables. Increased dis-

turbance rates have favored early-successional habitat

specialist taxa and reduced the habitat breadth of pre-

industrial generalists, thereby increasing the strength

of community-environment relationships.

Conclusions Our results support that disturbance can

alter the strength of community-environment relation-

ships and also suggest that functional traits of species

within the regional pool could predict whether or not

disturbance alters such relationships.

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s10980-017-0591-y) con-
tains supplementary material, which is available to authorized
users.

V. Danneyrolles (&) � Y. Bergeron

Centre d’étude de la forêt (CEF) and Chaire industrielle

CRSNG-UQAT-UQAM en Aménagement Forestier
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Introduction

Within a regional species pool (c-diversity), variation

in community composition (b-diversity) is thought to

reflect niche processes such as environmental filtering

and biotic interactions, as well as neutral processes

such as ecological drift and dispersal limitation

(Vellend 2010, 2016; Chase and Myers 2011; Götzen-

berger et al. 2012). The relative importance of

environmental filtering is generally dominant when

the regional species pool is small, as is the case in

northern temperate and boreal tree communities where

c-diversity is lower (Myers et al. 2013). Knowledge of

how environmental gradients generate diversity across

forest landscapes represents a critical issue in the era

of global change, which exerts especially powerful

impacts by shifting disturbance regimes. For example,

climate change alters fire regimes (Westerling et al.

2006; Flannigan et al. 2009) and insect outbreaks

(Haynes et al. 2014). Land-use alters natural distur-

bance regimes (Bowman et al. 2011) and adds new

anthropogenic disturbances (e.g., agriculture, logging;

Foley 2005).

Disturbances represent key drivers of ecological

diversity (Fraterrigo and Rusak 2008) and may have

various effects on b-diversity patterns. On one hand,

gradients of disturbance frequency and intensity

influence spatial heterogeneity in community structure

and composition (e.g., Carreño-Rocabado et al. 2012;

Cyr et al. 2012; Gennaretti et al. 2014a). Disturbances

can also lead to divergent community structure and

composition across environmental gradients (Cooper

et al. 2003; Pausas and Verdú 2008; Harvey and

Holzman 2014) and may even increase the strength of

community-environment relationships (Hogan et al.

2016). Moreover, disturbance can increase b-diversity

through an increase in the strength of ecological drift

and neutral sampling, specifically when it decreases

the average number of individuals in a community

(i.e., community size; Myers et al. 2015; Catano et al.

2017). On the other hand, disturbances may lead to

spatial homogenization and decoupling of commu-

nity-environment relationships by promoting a small

pool of disturbance-tolerant generalist species across

entire environmental gradients (e.g., Chase 2007;

Vellend et al. 2007). This last phenomenon has been

widely reported in European and northeastern North

American forests that were subjected to long-term

intensive land-use (e.g., Schulte et al. 2007; Vellend

et al. 2007; Hanberry et al. 2012a, 2012b; Thompson

et al. 2013). Given these contradictory results, greater

knowledge of how disturbances alter b-diversity

patterns and their relationships with environmental

gradients would represent an advance in community

assembly theory, whilst also improving our ability to

conserve and restore biodiversity in human-modified

forest landscapes (Myers et al. 2015; Socolar et al.

2016; Wainwright et al. 2017).

In this study, we analyze the long-term response of

tree communities to increased disturbance rates that

were linked to European settlement and industrializa-

tion at the temperate-boreal interface of eastern

Canada. We used a reconstruction of pre-industrial

communities based upon historical land survey

records (1854–1935), together with modern data, to

assess changes in tree b-diversity patterns and com-

munity-environment relationships. One common way

to assess the relative importance of community-

environment relationships is to partition the b-diver-

sity into fractions that are explained by environmental

variables (e.g., Cottenie 2005; Legendre et al. 2009;

Myers et al. 2013). We used this methodological

framework to test two alternative hypotheses:

1. The homogenization-decoupling hypothesis Pre-

industrial tree communities were strongly structured

by natural environment filters, which generated

diversified landscapes. Increased disturbance rates

following European settlement subsequently favored a

small pool of more disturbance-tolerant generalist taxa

across entire environmental gradients. In this case, we

expect spatial homogenization (i.e., a decrease in b-

diversity) and decoupling of community-environment

relationships (i.e., a decrease in the proportion of b-

diversity that is explained by environmental

variables).

2. The heterogenization-strengthening hypothe-

sis Pre-industrial dominant taxa were generalists

with respect to environmental gradients, which con-

sequently generated relatively homogeneous land-

scapes. Increased rates of disturbances following

European settlement subsequently increased spatial
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heterogeneity and habitat filtering by favoring more

specialist taxa and reducing the habitat breadth of pre-

industrial generalists. This alternative hypothesis

predicts an increase in b-diversity and the strength of

community-environment relationships.

Materials and methods

Study area and historical background

The study area covers 22,000 km2 of eastern Canada

(Fig. 1). The region is located at the transition between

temperate mixedwood and boreal conifer-dominated

forests (Rowe 1972). It corresponds to the maple-

yellow birch and balsam-fir yellow birch bioclimatic

domains according to the provincial classification

scheme of Quebec (Robitaille and Saucier 1998;

Fig. 1). Mean annual temperature and total precipita-

tion (1981–2010) respectively range from 5.2 �C and

918 mm at the southern extreme of the study area

(Rapide des Joachims) to 2.3 �C and 885 mm in the

north (Montbeilliard). Surface deposits correspond to

clays that were deposited by the pro-glacial Barlow

Lake in lowland areas (Vincent and Hardy 1977) and

glacial tills, together with rocky outcrops, in upland

areas. In this region, several factors that influence the

establishment and growth of tree species are linked to

the complex topographic gradient (drainage, nutrient

availability, soil depth, micro-climate; Fraser 1954;

MacHattie and McCormack 1961; Brown 1981).

The time period that is covered by the historical

data (1854–1935) corresponds to the end of the Little

Ice Age (LIA; about 1250 AD–1850 AD; Gennaretti

et al. 2014b). The drier climate of the LIA was

particularly favorable to the propagation of fires in

certain parts of eastern North America (Bergeron and

Archambault 1993; Bergeron et al. 2006; Clifford and

Booth 2015). In our study area, large crown fires were

frequent in the north (Grenier et al. 2005), while their

frequency decreased to the south (Drever et al. 2006).

First Nations populations in the region at that time can

be roughly estimated at several thousand individuals

(Couture 1983; Riopel 2002), who exerted rather

localized ecological effects across the landscape

(Danneyrolles et al. 2016a).

European settlement and industrialization have

resulted in the increase of both logging and fire.

Industrial logging began at the end of the 19th C., and

mainly focused on selective cutting of tall pine trees

(Pinus spp.; Riopel 2002). At the beginning of the 20th

C., Euro-American settlement and temporary favor-

able climatic conditions resulted in an important peak

in burned areas (from about 1910–1930; Lefort et al.

2003; Grenier et al. 2005). Logging activities inten-

sified following the construction of a paper mill in

Témiscaming in 1917, which led to the rapid devel-

opment of partial cutting of small-diameter spruces

(Picea spp.) and fir (Abies balsamea; Lienert 1966).

Clear-cutting practices emerged with the mechaniza-

tion of forestry in the 1970s. Yet, large scale natural

disturbance such as outbreaks of spruce budworm

(Choristoneura fumiferana) remained frequent in the

study area with at least three major outbreaks over the

last centuries (1840–1865; 1910–1930; 1970–1990;

Bouchard et al. 2006a, b).

Community and environmental data

In total, 5910 observations on pre-industrial forest

communities were extracted from 79 logbooks report-

ing land surveys of township and forest concession

limits, which were conducted from 1854 to 1935.

These observations were precisely geo-referenced

using historical and modern digital cadastral maps,

and are usually spaced 200–300 m apart along tran-

sects scattered over the study area (Fig. 1). For this

study, only taxa list observations were retained (e.g.,

‘‘Pine, spruce, yellow birch, cedar and a few maples’’).

Terrail et al. (2014) have compared these types of taxa

lists with early forest inventories from the preindus-

trial era and have statistically demonstrated that the

position of taxa in the taxon list reliably reflects their

relative basal area. Thus, a relative rank of abundance

(r) was assigned to each taxon that was listed

according to its position in the taxon list (i.e., from

rank 4; dominant, to rank 0; absent). These observa-

tions are also divided into two geometric types: line

description (only those with length\ 300 m were

retained; 29% of observations) and point observations

(71% of observations). Finally, only observations that

corresponded to pre-logging conditions have been

selected, since surveyors clearly mentioned when they

encountered logged forests along transects (e.g.

‘‘cuts’’, ‘‘old cuts’’, ‘‘logged’’).

Modern forest communities were documented with

modern forest maps (photo-interpretation 2001–2011;

1:20,000 scale; Berger 2008) to assign a modern
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equivalent of composition to each historical observa-

tion (see Appendix S1 in the Supporting Information

for detailed methods). These maps delimited stands by

identifying the main taxa that were present in the

canopy, thereby allowing the construction of domi-

nance and presence maps for each taxon. A relative

rank of abundance (r) was then assigned to taxa based

upon their relative cover in the intersections between

(i) a 100-meter buffer zone around each point or line

centers of historical observations, and (ii) Thiessen

polygons that were generated from these observations

(Appendix S1). A 100-meter buffer was chosen to

match the standard spacing used by preindustrial

surveyors for their observation ([ 80% of spacing

between preindustrial observations were approxi-

mately 200 meters). Intersections with Thiessen

polygons were then used to delimitate overlapping

buffer polygons generated by historical observations

that were spaced by less than 200-meter apart (see

illustration in Appendix S1). Some species from this

modern data-set were grouped at the genus level to

match the taxa that were mentioned by surveyors,

while rarely mentioned taxa (\ 5%) within historical

and modern observations were grouped as ‘‘others’’.

Modern and historical data-sets appeared strongly

comparable since they both identified the main tree

taxa which were present in the canopy along transects,

and that our method captured a very similar number of

taxa per observation in both data-sets (a-diversity;

Fig. 2).

Several environmental variables (Table 1) were

used to analyze community-environment relation-

ships. Because there are not enough weather stations

in this area to assign accurate climate data to each

observation, latitude was retained to represent the

regional temperature gradient, with mean annual

temperature ranging from 5.2 �C at the southern

extreme of the study area to 2.3 �C in the north

(Rapide des Joachims and Montbeillard weather

stations, respectively). Eight other variables that are

linked to the topographic gradient were derived from

modern forest maps (Berger 2008): elevation (Fig. 1),

slope, drainage and five classes of surface deposits

(Table 1, see maps in Appendix S2).

Data analysis

Data analysis was conducted in four stages. First, we

calculated the overall b-diversity that was represented

by multivariate dispersion (Anderson et al. 2006) of all

sites for each time period. Only taxa presence-absence

data were retained for the b-diversity analysis because

this metric is considered to be a robust measure of

community composition (Anderson et al. 2011; Bas-

tow Wilson 2012), which avoids potential bias in

abundances of pre-industrial and modern data. Taxa

presence-absence was used to compute dissimilarity

matrices (Sørensen dissimilarity; Legendre and De

Cáceres 2013). Multivariate dispersion (i.e., b-diver-

sity), in turn, was defined as the dissimilarity of

individual sites relative to the centroid of all sites. We

tested for differences in b-diversity between prein-

dustrial and modern times with a permutation-based

test of multivariate homogeneity of group dispersion

using the ‘‘betadisper’’ function of the R vegan

package (999 permutations, Oksanen et al. 2015).
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Second, we partitioned b-diversity (Legendre et al.

2005, 2009; Peres-Neto et al. 2006) into components

that were explained by environmental and spatial

variables through redundancy analysis (RDA; Legen-

dre and Legendre 2012) for each time period. Taxa

presence-absence was again selected to represent

community composition. The nine environmental

variables (Table 1) were used to construct third-

degree polynomial Equations (27 monomials). Mono-

mials with exponents allow for the modeling of non-

linear relationships between environmental and

responses variables (Legendre et al. 2009). Commu-

nity spatial structure was analyzed with distance-

based Moran’s eigenvector maps (dbMEM; Dray et al.

2012; Legendre and Legendre 2012). In brief, dbMEM

analysis produces a set of orthogonal spatial variables

that are based upon the XY coordinates of sites and

which are then used as explanatory variables. These

spatial eigenfunctions (dbMEMs) represent a spectral

decomposition of the spatial relationships among the

study sites. An autocorrelation coefficient (Moran’s I)

was computed for each dbMEM and only dbMEMs

that model positive autocorrelation were retained,

resulting in a total of 1217 dbMEMs for our 5910 sites.

Consequently, b-diversity was first partitioned

between (i) environmental variables (i.e. pure envi-

ronmental fraction) (ii) spatial variables (pure spatial

fraction) and (iii) shared space-environment fraction.

The same process was used to partition the b-diversity

that was explained by different environmental vari-

ables, represented by 4 sets of monomials: latitude;

elevation, slope and drainage, surface deposit and

shared fractions between these four sets of variables.

Forward selection with permutation tests on the

increase in R2 at each step (999 permutations, 5%

significance level) was then used to select the envi-

ronmental and dbMEM variables that best explained

variation in communities (Blanchet et al. 2008), and

which were retained in the final models. Finally, we

tested for differences in the fractions of variance

explained by spatial and environmental variables

(after forward selections) between the two time

periods using the bootstrap procedure proposed by

Peres-Neto et al. (2006), based on 999 iterations. All

analyses were performed using R: dbMEMs were

performed with the ‘‘PCNM’’ function of the PCNM

package (Legendre et al. 2013), variation partitioning

and forward selection were performed respectively

with the ‘‘varpart’’ and ‘‘ordistep’’ functions within the

vegan package (Oksanen et al. 2015).

To visually represent the compositional changes

across environmental gradients, a principal compo-

nent analysis (PCA) was performed with environmen-

tal variables (Table 1) of all sites. Among surface

deposits, only tills and clays were retained since they

covered more than 80% of the study area (Appendix

S2). All environmental variables were standardized

prior to analysis. Taxa centroids within site scores of

the PCA were calculated, for each time period, and

were plotted on the first two principal components.
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Finally, indices of dominance and prevalence

(Scull and Richardson 2007; Terrail et al. 2014) were

calculated for both periods to describe the composi-

tional changes. A weight was assigned to each

observation based on their mean spacing (Dupuis

et al. 2011). Dominance and prevalence indices were

then calculated according to the formula:

Fir ¼ Nir=Mr

where Nir is the total weight of taxon i at rank r in taxa

lists, and Mr is the total weight of observations. The

dominance index represents the Fir of taxa at the

dominant rank (i.e., r = 4), while the prevalence index

represents the Fir of taxa regardless their ranks on the

lists (i.e., r[ 0). The frequency index gives a more

comprehensive description but may underestimate

some taxa, while dominance is a more robust metric

to describe the abundance when dealing with the most

abundant taxa (Terrail et al. 2014). Note that these

indices were only used to analyze changes in taxa

composition, while b-diversity analyses were based on

presence-absence data. Monte-Carlo paired tests

(modern rank of taxa i vs. pre-industrial rank of taxa

i, 10,000 permutations) were used to determine the

significance of these changes. To map pre-industrial

and modern communities, the prevalence index was

calculated for 73 ecological districts (homogeneous

physiographic zones, ranging from about 50–500 km2

in area; Robitaille and Saucier 1998) comprising more

than 15 observations for each period.

Results

Our results show that observed b-diversity was

slightly but significantly (p\ 0.001) higher in modern

compared to pre-industrial communities (Fig. 2),

despite the fact that our data were constrained to a

similar distribution of a-diversities within sites. Dur-

ing pre-industrial times, one-fifth of the b-diversity

was spatially structured (20%; Fig. 3). Less than half

of this spatial structure can be related to environmental

variables (8%) and environmental variables alone

explained only a very small proportion of the b-

diversity (3%; Fig. 3), which was mostly accounted

for by latitude (Table 2). The total proportion of b-

diversity that was explained by environmental vari-

ables (spatially-structured ? non-spatially structured

environmental variables) almost doubled from pre-

industrial to present times (from 11–21%, and more

than two-thirds of this variation is now spatially

structured (15%). Bootstrap tests revealed significant

differences between preindustrial and modern times

for all spatial (both shared and pure fractions;

p\ 0.001) and environmental fractions (both shared

and pure fractions; p\ 0.001). The environmentally

explained modern b-diversity is essentially linked to

the combination of gradients in elevation, latitude and

surface deposits (Table 2).

Compositional changes depicted in Table 3 and

Fig. 4 give a good insight on how the increased

disturbance rates have led to a strengthening of

community-environment relationships. In preindus-

trial times, balsam fir (Abies balsamea), spruces

(Picea spp.) and Pines (Pinus spp.) were the most

prevalent (59.4, 57.2 and 45.9%, respectively;

Table 3) and dominant taxa (18.2, 27.9 and 18.6%,

respectively; Table 3). These mid- to late-succes-

sional conifers were very ubiquitous across environ-

mental gradients, with only spruces and pines that

were slightly separated across the latitudinal and

slope-drainage gradients (Figs. 4 and 5). Among

Table 1 Description of environmental variables (see maps in Appendix S2)

Variables Description

Latitude Latitude at the center of observations

Elevation Elevation from an 1:50,000 elevation model at the center of observations

Slope Five class from low slopes (1) to high slopes (5) that are derived from modern forest maps (Berger 2008) at

the center of observations

Drainage Seven class from poorly drained (1) to very well drained (7) that are derived from modern forest maps

(Berger 2008) at the center of observations.

Surface deposits (5

variables)

Five variables representing relative cover area [within 100 m buffer-Thiessen intersection polygons] of

till, clay, sand, rocky and organic deposits that are derived from modern forest maps (Berger 2008)
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deciduous taxa, birches (Betula papyrifera and B.

alleghaniensis) were the most dominant and prevalent

(Table 3) and were also slightly separated across the

latitudinal, elevation and deposit gradients (Fig. 4).

Conversely, specialist taxa were very rare during

preindustrial times. For example, poplars (Populus

spp.), that were specialized to northern clay lowland

(Figs. 4 and 5), recorded 13.9% in prevalence for the

whole study area (Table 3). Maples (Acer spp.)

recorded a prevalence of only 4.7% (Table 3) and

were conversely specialized to southern till uplands

(Figs. 4 and 5).

Increased disturbance rates between preindustrial

and modern times have first led to an increase in early-

successional deciduous specialist taxa. Dominance

and prevalence of poplars have significantly increased

(? 14.1% and ? 23.8%, respectively; Table 3)

mainly on northern clay lowland (Figs. 4 and 5).

Dominance and prevalence of maples increased

(? 8.9 and ? 30.1%; respectively; Table 3) mainly

on southern till uplands (Figs. 4 and 5). Secondly,

while preindustrial generalists decreased in abun-

dance, the breadth of their habitats has also been

reduced. Spruces experienced a sharp decrease in

dominance and prevalence (- 11.5 and - 20.5%,

respectively, Table 3.) away from well-drained slope

(Fig. 4). Pines also experienced a sharp decrease in

dominance and prevalence (- 9.3 and - 19.5%,

respectively; Table 3) but conversely away from well

drained steep slopes (Fig. 4). Moreover, yellow birch

(Betula alleghaniensis) and eastern white cedar (Thuja

occidentalis) tended to specialize toward southern till

upland (Fig. 4), even though they did not experience

significant change in abundance (Table 3).

Discussion

Our results largely reject the homogenization-decou-

pling hypothesis, while tending to confirm the hetero-

genization-strengthening hypothesis. Modern overall

b-diversity was significantly but only slightly higher

than pre-industrial b-diversity (Fig. 2). Thus, our data

did not record strong heterogenization of tree com-

munities. Yet, our results clearly showed a significant

increase in the strength of community-environment

relationships, which was mostly associated with the

shared environment space fraction (Fig. 3). This

contrasts with several previous studies that demon-

strated the homogenization-decoupling trend as a

consequence of European settlement of northeastern

North America (e.g., Schulte et al. 2007; Hanberry

et al. 2012a, b; Thompson et al. 2013).

Environmental ubiquity of pre-industrial dominant

taxa

An important aspect of our findings is that environ-

mental variables only explained a small proportion of

preindustrial b-diversity. This response likely reflects

unmeasured environmental factors (e.g., micro-site

conditions, biotic interactions), beyond the strong

environmental ubiquity of the most abundant pre-

industrial taxa. Spruces, pines and balsam fir tended to

be present across the whole range of environmental

modernpreindustrial

space
12%

env.
3%8%

unexp. 77%

space
9%

env.
6%15%

unexp. 70%

Fig. 3 Venn diagrams of variation partitioning for environ-

mental and spatial (dbMEM) data-sets. Values indicate percent

of variance explained by individual and intersection fractions,

while unexplained variation is shown under diagrams. %).

Bootstrap tests revealed significant differences between prein-

dustrial and modern times for all spatial (both shared and pure

fractions; p\ 0.001) and environmental fractions (both shared

and pure fractions; p\ 0.001)

Table 2 Comparison of variation partitioning results between

pre-industrial and modern time periods for environmental data-

sets

Pre-industrial Modern

[all. %] [ind. %] [all. %] [ind. %]

Latitude 7 4 11 4

Elevation 4 1 12 4

Slope-drainage 3 1 5 1

Surface deposit 3 1 10 2

Values indicate percent of variation explained by each

environmental data-set and including shared fractions with

other datasets ([all.]) and percent of variation explained by

each environmental data-set and not explained by other data-

sets ([ind.])
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gradients, whereas environmental specialists (e.g.,

poplars, maples) were very rare. Nevertheless, pre-

industrial b-diversity was only slightly lower than

modern b-diversity and was spatially structured

(rather toward large landscape units at the regional

scale than finer-scaled patches at the local scale;

Supplementary materials S3). We speculate that

legacies of the significant fire activity during the Little

Ice Age (LIA; Grenier et al. 2005; Drever et al. 2006)

likely explain this regional broad-scaled spatial struc-

ture of pre-industrial communities. Fire-sensitive taxa

(balsam fir, yellow birch, white cedar) tended to be

more frequent in areas that had not been subjected to

high fire frequency during the LIA (Cyr et al. 2012;

Danneyrolles et al. 2017), whereas fire-prone taxa

(spruces, pines, paper birch) dominated the rest of the

study area. Spatial patterns of natural disturbance had

likely been the key mechanism that structured pre-

industrial b-diversity at the landscape scale, while

habitat selection was less important.

Increased b-diversity and strengthening

of community-environment relationships

Increased disturbance rates following European settle-

ment have favored more specialized taxa across envi-

ronmental gradients. Poplars have mostly increased in

northern lowlands that are dominated by clay deposits,

which allow their vigorous proliferation by roots suck-

ering following disturbances (Bergeron and Charron

1994; Bergeron 2000). Conversely, maples abundance

increased on well-drained and warmer upper slopes of

southern higher elevations, where they were more

competitive (Barras and Kellman 1998; Danneyrolles

et al. 2016b). Simultaneously, preindustrial generalists

Table 3 Pre-industrial and modern dominance and prevalence

indices (%) for the entire study area

TAXA Preindustrial Modern D

dom. prev. dom. prev.

Spruces 27.9 57.2 16.3 36.7 -**

Balsam fir 18.2 59.4 7.4 41.9 -**

Pines 18.6 45.9 9.3 26.5 -**

White cedar 4.7 17.2 3.9 18.1 NS

Larch 2.9 10.9 0.7 2.6 -**

Poplars 5.5 13.9 19.6 37.7 ?**

Paper birch 11.0 35.0 20.6 59.4 ?**

Yellow birch 9.1 29.4 11.1 32.0 NS

Maples 1.2 4.7 10.1 34.8 ?**

Others 0.8 3.5 1.0 4.1 ?**

D indicates the results of Monte-Carlo paired tests (±:

alternative hypothesis; * p\ 0.01; ** p\ 0.001; NS Non-

significant)

a

b

Fig. 4 Principal component analysis (PCA), axis 1 explains

42% and axis 2 explains 23% of environmental variability,

respectively. Biplot (a) shows the positions of sites (grey

numbers) and correlations of environmental variables with axes

1 and 2. Plot (b) shows the centroids of taxa presence within the

site scores, during both pre-industrial (empty circles) and

modern (full discs) periods, circles diameter is proportional to

taxa prevalence
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have tended to specialize on more narrow habitats at the

extremes of the topographic gradient. Boreal conifers

(spruces, balsam fir) were restricted to poorly drained

lower slopes, where colder and wetter conditions allowed

them to maintain a substantial competitive advantage

(Barras and Kellman 1998; Danneyrolles et al. 2016b).

Conversely, pines were restricted to low productive,

xeric steep slopes, where they maintained a strong

competitive advantage (Abrams 2001).

The interaction between dispersal limitation of

species and environmental selection (Vellend

2010, 2016) may also have played an important role

in the strengthening of community-environment rela-

tionships. While poplars and maples were very rare

and restricted to spatially confined specific environ-

mental conditions in preindustrial times, dispersal

limitations (e.g., vegetative dispersion of poplars)

could have restricted their expansion to environmen-

tally similar adjacent areas. This may explain why the

most important increase in strength of community-

environment relationships was associated with the

shared environment-space fraction. This interpretation

is well supported by recent findings in herbaceous

plant communities, where disturbance tends to

increase b-diversity when dispersal is limited, while

homogenizing communities with increased dispersal

(Catano et al. 2017).

Broader practical and theoretical significance

Anthropogenic disturbance has caused b-diversity to

increase, decrease or remain unchanged, depending

upon the processes that are involved and the scale of

observation (Socolar et al. 2016). In our study area,

increased disturbance rates that were linked to Euro-

pean settlement has both slightly increased b-diversity

and strengthened community-environment relation-

ships at the landscape scale. This may reflect the fact

that in our study area, the effects exerted by anthro-

pogenic disturbance (i.e., industrial logging) have

been analogous to those of natural disturbance (i.e.,

fire, insect outbreaks). Conversely, more intense

disturbance lies outside the range of natural variability

(e.g., land cultivation and subsequent abandonment),

and may result in decreasing b-diversity and decou-

pling of community-environment relationships (Vel-

lend et al. 2007). Such past agricultural land-use is

common in other regions of northeastern North

America, which likely explains why our results

contrast with those of other historical studies that

have reported the homogenization trend as a result of

European settlement (e.g., Schulte et al. 2007; Han-

berry et al. 2012b; Thompson et al. 2013).

From a more theoretical perspective, recent studies

have emphasized that disturbance may mainly alter b-

diversity through stochastic processes by modifying

the average number of individuals and species in

communities (neutral sampling effect), rather than

through changes in deterministic processes (Myers

et al. 2015; Catano et al. 2017). Our study supports that

25km

spruces
bals. fir
pines
cedar
larch
poplars
w. birch
y. birch
maples
others

Preindustrial

Modern

Fig. 5 Relative prevalence of each taxon within each ecolog-

ical district that includes more than 15 observations
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disturbance can also alter the strength of deterministic

niche processes of community assembly (Vellend

et al. 2007; Hogan et al. 2016). Dispersal can strongly

interact with both deterministic and stochastic pro-

cesses (Vellend 2010), with for example low dispersal

tending to increase b-diversity through neutral sam-

pling effects following disturbance (Catano et al.

2017). Our results suggest that low dispersal may

likewise increase the strength of community-environ-

ment relationships following disturbance (Vellend

et al. 2014). More broadly, our findings suggest that

functional traits of species within the regional pool

could predict whether or not disturbance alters the

strength of community-environment relationships

(Questad and Foster 2008). Three key categories of

traits appear central: disturbance tolerance (e.g., early-

vs. late-successional), habitat specialization (e.g.,

specialist vs. generalist) and dispersal capacities.

The various combinations of these traits in different

regional species pools should be considered when

aiming to generalize the effects of disturbance upon b-

diversity and community-environment relationships

across ecosystems.
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d’Or, Québec, Canada

Cyr D, Gauthier S, Bergeron Y (2012) The influence of land-

scape-level heterogeneity in fire frequency on canopy

composition in the boreal forest of eastern Canada. J Veg

Sci 23:140–150

Danneyrolles V, Arseneault D, Bergeron Y (2016a) Pre-indus-

trial landscape composition patterns and post-industrial

changes at the temperate-boreal forest interface in western

Quebec, Canada. J Veg Sci 27:470–481

Danneyrolles V, Arseneault D, Bergeron Y (2016b) Long-term

compositional changes following partial disturbance

revealed by the re-survey of logging concession limits in

the northern temperate forest of eastern Canada. Can J For

Res 46:943–949

Danneyrolles V, Dupuis S, Arseneault D, Terrail R, Leroyer M,
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méridional. Gouvernement du Québec, Ministère des res-
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