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Spatial analysis of black spruce (Picea mariana (Mill.) B.S.P.)
radial growth response to climate in northern
Québec – Labrador Peninsula, Canada
A. Nicault, E. Boucher, D. Tapsoba, D. Arseneault, F. Berninger, C. Bégin, J.L. DesGranges, J. Guiot,
J. Marion, S. Wicha, and Y. Bégin

Abstract: The aim of this study is to analyze the relationships between black spruce (Picea mariana (Mill.) B.S.P.) growth and
climate at a large spatial scale in North America's northeastern boreal forest. The study area (approximately 700 000 km2) is
located in the taiga zone of the Quebec – Labrador Peninsula. A network of tree-ring chronologies from 93 black spruce
populations was developed. A hierarchical cluster analysis was conducted to analyze tree-ring series affinities, and response
functions were calculated to analyze relationships between tree rings and climate. The cluster analysis results showed well-
marked spatial affinities among the tree-ring series. These affinities were strongly linked with the spatial variability of the
relationships between tree rings and climate. The interannual growth variations were governed mainly by the temperature
variables that preceded the growing season (November (negative influence), December–January (positive influence), and April
(positive influence)). The growing-season temperature (July temperature) mainly influenced the northernmost populations.
Relationships between tree rings and climate in the northeastern boreal forest varied at a large spatial scale. This variability was
expressed by a north–south contrast, which appears to be related to a temperature gradient, and an east–west contrast linked to
a humidity gradient, which favors winter snow cover.

Key words: dendroecology, relationships between tree rings and climate, taiga, black spruce, Quebec – Labrador peninsula, spatial
variability.

Résumé : Le but de cette étude est d'analyser la variabilité spatiale des relations entre la croissance de l'épinette noire (Picea
mariana (Mill.) B.S.P.) et le climat dans la forêt boréale Nord-Américaine. La zone d'étude (environ 700 000 km2) se trouve
dans la région de la taïga de la péninsule Québec–Labrador. Un réseau de dendrochronologies provenant de 93 peuplements
d'épinette noire a été construit. Une analyse de groupement hiérarchique a été réalisée pour analyser les affinités entre les
séries et des régressions linéaires multiples associées à la technique « bootstrap » ont été utilisées pour calculer les fonctions
de réponse des arbres au climat. Les variations interannuelles de la croissance sont régies principalement par des variables
de température qui précèdent la saison de croissance (température des mois de novembre (influence négative), décembre–
janvier (influence positif) et avril (influence positif)). Les températures ayant une influence durant la période de végétation
(température de juillet) ne s'exerce que sur les peuplements les plus septentrionaux. Les relations cerne-climat dans le nord
de la forêt boréale varie fortement sur la zone étudiée. Cette variabilité est exprimée par un contraste nord–sud qui semble
être reliée à un gradient de température et par un contraste est–ouest lié à un gradient d'humidité qui favorise la couverture
de neige en hiver.

Mots-clés : dendroécologie, relations cerne–climat, taïga, epinette noire, péninsule Québec – Labrador, analyse spatiale.

Introduction
North America's boreal forest is dominated by black spruce

(Picea mariana (Mill.) B.S.P.), a species indigenous to North America
(Farrar 1995). Black spruce forests can be divided into three major
forest zones (from south to north): closed spruce–moss forests,
spruce–lichen woodlands, and forest tundra (Payette 1983, 1993).

The climate, along with the frequency of disturbance (Payette 2007;
Girard et al. 2009), determines both the distribution limits of black
spruce and the structure of black spruce forests (Beuker 1994; Lavoie
and Payette 1994; Kullman 1996; Hofgaard et al. 1999; Bradshaw et al.
2000; Hänninen et al. 2001; Bertrand and Castonguay 2003). These
two factors also influence the physiological and phenological

Received 7 February 2014. Accepted 4 November 2014.

A. Nicault. Aix-Marseille University, ECCOREV (FR-3098), Europôle Méditerranéen de l'Arbois, BP 80, 13545 Aix-en-Provence cedex 4, France.
E. Boucher. Département de géographie and GEOTOP, Université du Québec à Montréal, Pavillon Hubert-Aquin, local 4175, Montréal, QC H2X 3R9,
Canada.
D. Tapsoba. Institut de Recherche d'Hydro-Québec (IREQ), Varennes, QC J1X 1S1, Canada.
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processes of this generalist species (Kramer et al. 2000; Kozlowski
2002). In the Quebec – Labrador peninsula, which is located north
of the 52nd parallel, black spruce grows over a wide range of
environmental conditions from outcrops to peat bogs. Fire occur-
rences are relatively high in the western region of the peninsula
close to James Bay and diminish to become low in the eastern
region (Boulanger et al. 2013). In this region, north of the 52nd
parallel, black spruce budworm becomes nonexistent or very rare.

The relationships between tree growth and climate can vary
spatially due to natural environmental gradients (Briffa et al.
1998; Mäkinen et al. 2002; Pederson et al. 2004; Carrer et al. 2007;
Miyamoto et al. 2010). In Québec and Labrador, a number of stud-
ies have analyzed the relationship between tree rings and climate
in several species (D'Arrigo et al. 1996, 2003; Payette 2007) along
latitudinal (Huang et al. 2010; Hofgaard et al. 1999; Girard et al.
2011) and longitudinal (Trindade et al. 2011a, 2011b) transects. Sig-
nificant variations were observed in the relationship between tree
rings and climate for all species and study areas. However, most of
these studies have focused on closed-crown boreal spruce and on
the influence of environmental variables. Very few studies have
addressed the large-scale spatial variability of the relationships
between tree rings and climate north of 51°N in the spruce–lichen
woodlands and in the forest tundra. The origin of such spatial
variation remains unclear (Miyamoto et al. 2010).

The objective of this study is to analyze the relationship be-
tween black spruce growth and climate at a large spatial scale in
open-crown boreal forests of northeastern North America. Our
study area covers the entire Quebec – Labrador Peninsula. It
extends from James Bay to the Atlantic Coast (from 49°3=N to
57°72=N and from 58°5=W to 79°1=W). Thus, our study provides
a geographical link between studies conducted on the Labrador
Peninsula (Trindade et al. 2011a, 2011b; Nishimura and Laroque
2011; Dumaresq 2011), around James Bay (Huang et al. 2010; Hofgaard
et al. 1999), and in central Quebec (Girard et al. 2011). Our objec-
tives are (i) to determine the climatic parameters that control tree
growth over the entire study area and (ii) to analyze the spatial
variability of relationships between tree rings and climate. This
study will shed new light on the response of black spruce to cli-
mate and will help anticipate future impacts of climate change on
the productivity of the most important boreal conifer in north-
eastern North America.

Materials and methods

Tree-ring data
We created a network of 93 tree-ring chronologies distributed

across the Quebec – Labrador Peninsula (Fig. 1; Supplementary
Table S11). These sites ranged in altitude from sea level to more
than 900 m in central Quebec. There was a strong continental
gradient including maritime sites situated only a few kilometres
from the sea, whereas most of the continental sites were located
approximately 480 km from the coast. Black spruce stands sam-
pled in this study (Fig. 1) originate from three major forest forma-
tions or bioclimatic zones, as defined in the literature (Payette
et al. 2001): forest tundra; spruce–lichen woodlands, which consti-
tute the most widely distributed forest structure in Quebec's high
boreal zone (Payette 1992; Girard et al. 2008); and spruce–moss
forests. Trees growing in wetlands or peat bogs were not sampled.

A majority of the studied stands were located in the eastern
taiga shield (ETS) ecozone (Fig. 1), defined by the Ecological
Stratification Working Group (1996). The western part of the ETS
consists of three wide ecoregions. The eastern part of the ETS,
centered on Labrador, appears to be geographically more complex
and is composed of 14 ecoregions. Only four stands were located in

the eastern boreal shield (EBS) ecozone, one in ecoregion 101 and
three in ecoregion 105 (Lake Melville).

Stands in the selected sampling area were as homogeneous as
possible regarding the topography, soil, and stand structure. A
minimum of 12 trees was sampled at each site. Only dominant
trees with a straight main stem and free from major anomalies
(scars, breaks, etc.) were selected. The sampled stands showed high
variability with respect to tree age and density (Supplementary
Table S11). The youngest sites generally originated from fire and
presented an even-aged structure, whereas the oldest sites tended
to possess an uneven-aged structure, with the majority of individ-
uals originating through vegetative multiplication. The sites also
differed in terms of tree density. Spruce–lichen woodlands are
characterized by well-drained, open stands with a sparse shrub
layer. By contrast, spruce–moss forests are generally less well drained
and possess a denser shrub layer. Our drainage data (Supplemen-
tary Table S11) shows that 90% of our stands were sampled in
drainage categories between 2 and 4 (between well-drained and
moderately well-drained terrains, respectively), a percentage that
reflects the homogeneity of drainage categories found north of
50°N, in eastern Canada's boreal forest. The sampled stands were
generally monospecific, although sporadic occurrences of jack
pine (Pinus banksiana Lamb.) and larch (Larix laricina (Du Roi)
K. Koch) were observed in the westernmost stands, whereas bal-
sam fir (Abies balsamea (L.) Mill.) and (or) larch were occasionally
observed in the easternmost stands.

Climate data and climatic characteristics of the study area
Weather stations are rare and scattered across the study area.

Their temporal coverage is often short term and incomplete. For
the sake of consistency, we chose a meteorological data grid
(0.5° × 0.5°) developed by Hydro-Québec for the province of
Quebec and for parts of the adjacent provinces using datasets from
weather stations obtained from Environment Canada, the pro-
vincial government of Quebec, and private agencies. Available
climatic information was kriged using topography as an external
drift (Wackernagel 1998; Tapsoba et al. 2005; Jeannée and Tapsoba
2010). The gridded dataset spanned the 1961–2000 period and has
been used in a number of recent studies (e.g., Brown 2010;
Monette et al. 2012; Poulin et al. 2011). From this gridded dataset,
we calculated the sum of monthly precipitation and the mean
monthly temperatures for the 1961–2004 period. Temperatures
vary along two gradients: a south–north gradient for the western
part of the study area and a west–east gradient for the Labrador
area. Within the study area, mean annual temperatures range
from –6 °C in the northernmost sites to –2 °C in the easternmost
sites. In the northernmost sites, mean winter (December–March)
and summer temperatures (June–September) are –22 °C and 10 °C,
respectively. The easternmost sites present mean winter and
summer temperatures of –15 °C and 14 °C, respectively. Summer
precipitation within the study area varies along a south–north
gradient, with more precipitation falling in the center of Québec.
In summer, the mean precipitation is less than 300 mm at the
northern sites and more than 450 mm at the southern and central
sites. In winter, snowfall varies along a west–east gradient, with
the eastern section of the study area receiving approximately
1300 mm of snow, which is nearly twice as much as the 700 mm of
snowfall recorded in the western section.

Construction of tree-ring chronologies
The samples were carefully sanded, visually cross-dated under a

binocular magnifier, and measured (accuracy of 1/1000 mm) along
two radii. Dating of each tree ring was then verified with the
program COFECHA (Holmes 1992). The tree-ring width series were
subsequently standardized to remove age-related trends and to

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfr-2014-0080.
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construct series with comparable dimensions (Fritts 1976). Stan-
dardized series were calculated by dividing the tree-ring widths
with a theoretical growth curve. This growth curve was calculated
using a LOESS fit (Cleveland and Delvin 1988; Nicault et al. 2010)
with a smoothing parameter of 0.4, which corresponds to a band-
width of 40% of the dendrochronological series length. The series
was standardized through a function of the R bioindic software
package (www.eccorev.fr/spip.php?article389) (R Core Team 2007).
Finally, a master chronology for each site was constructed by
calculating the mean of all of the standardized mean tree chro-
nologies.

The length of master chronologies ranged from 86 to 358 years
(Supplementary Table S21). Additional statistics such as expressed
population signal (EPS) and mean sensitivity were computed on
the entire chronology time period to assess the quality of the
master chronology.

Cluster analysis
A hierarchical cluster analysis (Everitt 1974; Gordon 1999) was con-

ducted to analyze the affinities between sites. A measure of similarity
was calculated using a matrix of Euclidean distance for each year
between all of the mean chronologies for the common period of
1920–1987. Then, Ward's agglomeration algorithm (Ward 1963;
Mirkin 2005) partitioned the set of objects. This technique minimizes
the interior variance of groups and tends to produce compact, equal-
sized dendrograms. To evaluate the cluster robustness, we calculated
the p values for each cluster via multiscale bootstrap resampling
(10 000 iterations). These values, associated with standard error, are
expressed in percentage in the dendrogram. Calculations were con-
ducted using the R pvclust package (R Core Team 2007).

Analysis of relationships between tree rings and climate
A response function in dendroclimatology is defined as a linear

function that links annual tree growth to climate. This linear

Fig. 1. (a) Location of study sites (circles); inset shows location of study area in Canada. (b) Ecozones in the study area. (c) Meteorological grid
and main meteorological stations (stars). Figure is provided in colour online.
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function allows climatic parameters that influence tree growth to
be identified (Tessier 1986; Guiot 1991; Guiot and Nicault 2010).
The goal is not only to determine which climatic parameters in-
fluence tree growth but also to identify the nature and strength of
the relationships between tree growth and monthly climatic vari-
ables. Response functions are linear multiple regressions applied
to the principal components of the climatic variables to avoid
colinearity. Then, back transformation into the original regres-
sors is applied. The regression is performed 500 times on subsets
of data that are randomly selected using the bootstrap method
(Efron 1979; Till and Guiot 1990). The coefficients of the response
function and the confidence intervals are given by the medians of
these iterations at the 2.5th and 97.5th percentiles. Response func-
tions were calculated over three time periods according to the
stand sampling date: 1961–1987 (one stand), 1961–1993 (21 stands),
and 1961–2001 (68 stands). The explanatory variables consisted of
12 months of temperature data and 12 months of precipitation
data, which were integrated separately in the calculation. Temper-
ature and precipitation series were chosen from the grid points clos-
est to the analyzed sites. As ring formation ceases after the end of
August – early September, monthly data were applied according
to biological years, i.e., from October of the previous year to Sep-
tember of the current year. These calculations were performed
using a function of the R bioindic package.

The overall reliability of response functions was evaluated
based on the determination coefficient (R2), which expresses the
percentage of variance explained by the model, statistical signifi-
cance according to the F test and based on the standard error (root
mean squared error (RMSE)), which expresses the model's robust-
ness. The weight of each climatic variable in the regression is
evaluated according to its p value and to the ratio between each
partial regression coefficient (associated with each climatic vari-
able) and its 1/2 95% confidence interval (S) (when partial regres-
sion coefficient are significant at a 95% level, the S value equals
one). The sign of the partial regression coefficient also specifies
the nature of the relationship (positive or negative) between tree
growth and the climatic variables considered.

To analyze the spatial variability of relationships between tree
rings and climate, results of the response functions were interpo-
lated over the study area. We used a kriging with external drift
(KED) technique that represents a special case of universal krig-
ing, which has been proven to yield higher predictive accuracies
in other contexts (Hudson and Wackernagel 2006; Minasny and
McBratney 2007; Tapsoba et al. 2005; Hernández-Stefanoni et al.
2011). In addition to the interpolated variable (the results of the
response function), KED requires a secondary term (an external
drift) that is strongly correlated with the results of the response
function and captures the strength and direction of the response
function coefficients. The external drift must be available at every
estimation point. In the present study, we retained the total
amount of snow and latitude as external drifts. Both variables
were strongly correlated with the results of the response function
(presented below) that we wished to interpolate over the entire
study area (the total amounts of snow correlated with November
(r = 0.67) and April (r = 0.78) temperatures; the latitudes correlated
with January–December (r = 0.68) and July (r = 0.58) temperatures).
It is important to note that the inclusion of an external drift in the
kriging process did not change the results of the response func-
tion at the sites where it was calculated but aided in interpolating
results where no tree-ring chronologies existed.

Finally, a redundancy analysis was performed to define the
main environmental variables associated with the spatial varia-
tion of tree-ring responses to the climate. The retained environ-
mental variables were the distance to the sea (DIST), elevation
(ELE), longitude (LONG), latitude (LAT), total amount of snow
(SNOW), total precipitation (PTOT), minimum temperature of the
coldest month (TMIN), and summer mean temperature (TJJA).

Results

Cluster analysis
The hierarchical analysis (Fig. 2) of the growth curves showed

that black spruce stands could be divided into four main groups.
These groups are discriminated more by regional constraint than
by site environmental characteristics. Actually, a few neighboring
sites were sampled in very contrasting site conditions from very
well-drained soil (xeric condition on outcrop) to less well-drained
soil and then to humid soil (peat–bog were avoided). Despite of
contrasting soil conditions, these neighboring sites were grouped
in the same, very significant small clusters: ROZM, ROZX, ROZI,
ROZW (96%), RH, RM, RX (98%), and DA1M, DA1X, DA1R (97%).

The four main groups were named according to the regions
where they clustered (Fig. 3). Group 1 (CLSUB) was clearly dissoci-
ated from the other three and was composed almost exclusively of
subarctic stands located to the northwest of the study area in the
Hudson Bay region. Group 3 (CLJAM) was located immediately to
the east of the James Bay region. Group 4 (CLLAB) included the
easternmost stands. Group 2 (CLCAN) was geographically coher-
ent but overlapped with the other three groups in the central part
of the study area, i.e., in the region of La Grande 4 (LG4) and
Caniapiscau reservoirs. Two of these groups were highly signifi-
cant with more than 95% confidence (CLSUB (95%), CLLAB (97%)),
one was significant at 92% (CLLAB), and one was significant below
90% (CLJAM, 88%). These results suggest that the existence of these
clusters was strongly supported by the data.

Response function
Radial growth appeared to be much more sensitive to tem-

perature (Fig. 4; Supplementary Table S31) than to precipitation
(Fig. 5; Supplementary Table S41). However, the relationship be-
tween tree growth and temperature was more complex than the
relationship between tree growth and precipitation. Variance ex-
plained by temperature differed greatly among stands assessed in
this study. The obtained r2 values ranged from 0.2 to 0.6. Only
one-third of r2 values are significant according F test p values;
however, the intersite coherency of response functions profiles
provided an extra measure of confidence in the observed results
(Supplementary Table S31). The most significant response func-
tions concerned mainly subarctic tree sites (CLSUB). Populations
in the northern, western, and eastern sections of the study area
(CLSUB, CLJAM, and CLLAB, respectively) were generally found to
be more sensitive to interannual climate variations than those
located in the central area (CLCAN).

Relationship with temperature

Summer temperatures
Summer temperatures (June, July, and August) showed a strong

positive influence on tree growth at only one-third of the analyzed
sites (Fig. 4). The CLSUB group and the easternmost CLLAB group
presented strong and coherent relationships with July tempera-
tures, whereas the other groups exhibited no relationship at all
with summer temperatures. A strong south–north gradient be-
come clearly visible after kriging of July temperature response
function coefficients (with latitude as an external drift), depicting
a strengthening response to summer conditions toward the tree
line (Fig. 6). A west–east gradient could also be distinguished in
the response map of July temperatures, with low responses being
observed in the CLJAM and CLCAN groups and a strengthening of
the coefficients over the easternmost part of the CLLAB group.

Early winter temperatures
November temperatures had a significant influence on 30 of

the examined black spruce populations, which again represented
approximately one-third of the study sites (Fig. 4). Cool, early
winters (mainly in November) were associated with enhanced
growth in the CLSUB, CLCAN (western portion), and CLJAM groups
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during the subsequent season. The KED map of the influence of
November conditions on tree growth obtained using the total
amount of snow as an external drift (Fig. 6) showed that a negative
influence was important in the westernmost portion of the study
area, whereas in the easternmost section, no significant relation-
ships with early winter conditions could be found.

Winter temperatures
December and January conditions positively influenced the

growth of approximately one-third of the sites (Fig. 4). Mild win-
ters were associated with enhanced growth during the following
growing season. The strongest relationships were observed in the
CLJAM group and in the westernmost portion of the CLLAB group,
whereas the northernmost populations did not show a strong
influence of winter temperatures. The KED map (Fig. 6) of the
interpolated responses to winter conditions (using latitude as an
external drift) demonstrated the existence of a decreasing south–
north gradient in the influence of winter temperatures over the
study area, with a weaker influence observed near the tree line
and a dominant influence observed in the spruce–lichen open
forest to the south of the study area.

Early spring temperatures
Mild April temperatures positively influenced tree growth in

the CLSUB, CLCAN (western portion), and CLJAM groups, whereas
no such effect was found in the CLLAB group. The KED-interpolated
response to early spring temperatures (using the total amount of
snow as a covariate) showed a strong west–east gradient. Stands
located in western Quebec were strongly influenced by April tem-
peratures, whereas those located in central and eastern Quebec
did not appear to be significantly influenced by April tempera-
tures.

Influence of environmental variables on the response to
temperature

The repartitioning of the stands along axes 1 and 2 (Fig. 7) dem-
onstrated that the relationships between tree rings and climate of
groups CLSUB (red), CLJAM (blue), and CLLAB (orange) (defined by
the clustering of the chronologies) were distinct from each other.
Stands in the CLCAN group (green), which overlapped the other
three groups, were dispatched in a coherent geographical group.
Indeed, relationships between tree rings and climate exhibited
stronger spatial coherence than the results of the clustering anal-
ysis conducted on mean chronologies.

The main environmental variables associated with the spatial
variation of the relationships between tree rings and climate were
LAT (related to a mean summer temperature), LONG (related to

Fig. 2. Results of the hierarchical analysis: affinities between mean tree-ring chronologies calculated in the 1920–1990 period. Significance level
and standard error (% and decimal, respectively) were performed for the four main clusters (dashed rectangles).

Fig. 3. Mapping of the hierarchical analysis results in study area.
Group 1 (CLSUB), red points; group 2 (CLCAN), green points; group 3
(CLJAM), blue points; group 4 (CLLAB), orange points.
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snow cover), PTOT, and TMIN. LAT discriminated stands sensitive
to winter temperatures from those sensitive to July temperatures.
LONG, PTOT, and TMIN discriminated stands sensitive to April
and November temperatures from the rest of the stands (Fig. 7).
ELE and DIST played a minor role in the relationships between
tree rings and climate.

Relationships with precipitation
The values of the coefficient of determination (R2) associated

with the response function were generally lower for precipitation
than for temperature and fluctuated between 0.1 and 0.3 (Fig. 5;
Supplementary Table S41). In addition, regression coefficients as-
sociated with these response functions were not significant and
confirmed the weak relationship with precipitation. However, the
CLSUB group clearly represented an exception, showing a signifi-
cant negative response to January and June–August precipitation
and had R2 values ranging from 0.4 to 0.7. In other words, dry
winters and dry summers were associated with enhanced growth
in the subarctic stands and, to a lesser extent, near the Caniapiscau
reservoir (eastern CLCAN).

Discussion
This study provides evidence that different combinations of

meteorological conditions can affect black spruce productivity
depending on the location of tree stands and regional climatolog-
ical characteristics. In this context, this work aimed to spatialize

the growth response of black spruce to monthly climatic varia-
tions in North America's eastern boreal forest. In particular, our
study emphasizes two distinct spatial gradients: a south–north
gradient reflecting the strengthening influence of summer tem-
peratures on black spruce growth and a west–east gradient re-
flecting the longitudinally decreasing influence of November and
April temperatures (Fig. 6) on black spruce growth.

South–north gradient
The latitudinal gradient described through our tree-ring net-

work suggests that between 47°N and 54°N, temperatures of the
preceding winter have a dominant influence on tree growth. How-
ever, north of 54°N and up to the tree line, summer temperatures
become the leading factor controlling black spruce growth. This
transition between influential variables likely reflects regional
climatic gradients. The relatively abrupt transition between the
winter-dominated and summer-dominated zones occurs at ap-
proximately 54°N. At this latitude, summer temperatures drop
from a mean of 14 °C to less than 10 °C within less than one degree
of latitude. This decrease represents a significant reduction in the
amount of heat available for tree growth and might be sufficient
to impose an important stress on tree productivity during the
summer period. This transition also roughly corresponds to a shift
between discontinuous and continuous permafrost, as well as cor-
responds to an important ecological transition from open lichen–
spruce forest to forest tundra (Payette 1992). All these changes

Fig. 4. Results of the response functions of growth to temperature. Histogram, R2 values at each site; surface chart, degree of significance for
each monthly temperature variable. Direct relationships are illustrated in blue, and indirect relationships are illustrated in orange.
Populations are grouped by cluster and then classified according to their longitude.

Fig. 5. Results of the response functions of growth to precipitation. Histogram, R2 values at each site; surface chart, degree of significance for
each monthly precipitation variable. Direct relationships are illustrated in blue, and indirect relationships are illustrated in orange.
Populations are grouped by cluster and then classified according to their longitude.
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highlight the existence of a strong latitudinal control on the eco-
systems and geosystems of the subarctic area exerted via summer
temperatures.

North of 54°N, warm summers increase photosynthetic effi-
ciency and thus tree growth. The growing season in the north is

quite short, and the energy input (from temperature and sunlight)
determines the synthesis of carbonaceous materials and the
allocation of these resources within the tree trunk (Körner 1998;
St George and Luckman 2001). Positive relationships between
summer temperatures and growth have been demonstrated for
many species at both high latitudes and high elevations (Wilson
and Luckman 2003; Carrer et al. 2007; Miyamoto et al. 2010;
Trindade et al. 2011a, 2011b; Nishamura and Laroque 2011).

However, south of 54°N, mild winters were found to be favor-
able for black spruce growth at a number of sites. Such a positive
effect of winter temperatures (generally in the months of Decem-
ber and January) has also been described elsewhere (Brubaker
1980; Pederson et al. 2004; Carrer et al. 2007; Miller-Rushing and
Primack 2008; Huang et al. 2010; Miyamoto et al. 2010; Tardif et al.
2001), and several hypotheses were formulated to explain this
phenomenon. First, mild winter temperatures can minimize tis-
sue damage to the cambium, buds, and leaves caused by severe
frost (Grier 1988; Huang et al. 2010). In addition, as forests become
more open toward the northern tree line, the wind strengthens
the effects of temperature, particularly during cold winters. In-
deed, ice crystals carried by the wind augment the effects of cold
temperatures by eroding and damaging foliage (Payette et al.
1996; Kajimoto et al. 2002), which reduces the photosynthetic
potential of the trees in the following summer. Cold winters may
also damage roots when the snow cover is not sufficiently thick
(Cox and Zhu 2003; Huang et al. 2010). In the study area, mild
winters are also more humid and may contribute to the mainte-
nance of a significant snow cover that protects roots from frost
events.

However, subarctic stands (CLSUB group) and those located
around the Caniapiscau reservoir also showed a negative influ-
ence of summer precipitation on tree growth, which is an indica-
tion that black spruce is not limited by water availability in the
study area. On the contrary, it implies that this species grows well
when precipitation is relatively low during summer. However,
this result may not be directly related to precipitation itself but
may instead reflect an indirect relationship with cloud cover and
temperatures. When a cool summer occurs in these high-latitude
areas, climatic conditions are quite humid and cloudy. Under such
conditions, less light is available, and colder temperatures result
in less efficient photosynthetic activity, particularly near the
northern tree line, where summer conditions have a determinant
influence.

West–east gradient
The strong west–east contrast in the sensitivity of trees to

November and April temperatures can be related to the snow
precipitation gradient and thus to the corresponding gradient in
the soil insulation potential. The abrupt transition between these
two regions occurs at approximately 70°W. On the western side of
this transition (in the James Bay – Hudson Bay region), snow pre-
cipitation represents approximately half of the precipitation fall-
ing over the Labrador region due to the increasing altitude and to
a strengthening maritime influence in the easternmost area
(Banfields and Jacobs 1998; Sheridan 2002; Trindade et al. 2011b).

In the James Bay – Hudson Bay region, dry winters are associ-
ated with a thinner snow cover, which has a less effective insulat-
ing effect. Thus, cool, early winters may allow an early snow cover
to develop that protects the soil surface from frost penetration
during winter months of December and January. According to
Geiger (1957), a snow cover of only 7.5 cm can reduce the differ-
ence in soil temperatures by approximately 50%. Therefore, a
thicker snow cover at the beginning of the winter season may
limit soil freezing and reduce root and rootlet mortality. A similar
relationship was found for white birch (Betula papyrifera Marsh.) in
the same area (Huang et al. 2010). Although the species investi-
gated in these works were different, our study reinforces the find-
ing that early winter conditions can be a determinant for tree

Fig. 6. Spatialization (krigeage with external drift (ED)) of
relationships between tree rings and climate. (a) Spatial
representation of the degree of significance for November
temperatures (S_Nov) to radial growth relationships; chosen ED is
mean total amount of snow; (b) spatial representation of the degree
of significance for the relationship between December and January
temperatures (S_Ja_Dec) and radial growth, chosen ED is latitude;
(c) spatial representation of the degree of significance for the
relationship between April temperatures (S_April) and radial
growth, chosen ED is mean total amount of snow; (d) spatial
representation of the degree of significance for the relationship
between July temperatures (S_July) and radial growth, chosen ED is
latitude.
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growth. However, east of 70°W, thicker snow accumulation likely
already provides the necessary insulating effect so that winter
temperatures are less effective in damaging roots and rootlets. It
is important to note that in more southerly regions, a positive
influence of November temperatures has been found to be associ-
ated with an extended photosynthetic period (Brubaker 1980).
This cannot be the case in the high-latitude ecosystem investi-
gated in this study, because the photosynthetic period of black
spruce ends in late October at most sites.

In contrast, high April temperatures may trigger an earlier than
usual initiation of photosynthesis (Guehl 1985; Strand and Öquist
1988; Suni et al. 2003). Cold late-winter conditions (associated with
a thick snow cover) can have a negative effect on future growth by
delaying both soil thawing and the initiation of cambial activity
(Graumlich and Brubaker 1986; Peterson et al. 2002; Kirdyanov
et al. 2003; Pederson et al. 2004; Miyamoto et al. 2010). However,
mild April temperatures can help reduce the thickness of the
snow cover, which might trigger earlier growth. In the eastern
portion of the study area, however, snow precipitation is always
abundant throughout the winter, and the snow cover lasts until
late April, regardless of spring conditions. Therefore, it is clear
that the easternmost stands that benefit from efficient snow cover
protection, even in late April, are less sensitive to late winter
meteorological conditions and more responsive to summer tem-
peratures.

Moreover, in the eastern part of the study area, we observed an
east–west gradient in which the easternmost sites were highly
sensitive to July temperatures and the more continental sites were
sensitive to winter temperatures. Sites near the Labrador Sea are
located at approximately 54°N and benefit from temperatures
equivalent to those found at 52°N on the west coast (Fig. 2). This
gradient has previously been observed in the same region by other
authors (Nishimura and Laroque 2011; Dumaresq 2011; Trindade
et al. 2011a, 2011b), who explained these varying relationships
based on a continental gradient. Our observations tend to indicate
that this gradient is more influenced by cold Labrador Sea tem-
peratures than by an actual continental effect.

Anticipated climate change
The response to climate is clearly not univariate and uniform on

the Quebec – Labrador Peninsula. Instead, it constitutes a rather
complex multivariate phenomenon, showing significant spatial
heterogeneity and gradients. In this context, the anticipated cli-
mate change may have different effects on tree productivity and
growth, and these effects may vary depending on the area inves-
tigated (Plummer et al. 2006). A uniform warming of winter con-
ditions would favor growth in the southernmost portion of the
study area, as such sites are sensitive to winter temperatures. By
contrast, the subarctic stands would not necessarily benefit from
milder winters, as stands living near the tree line are more sensi-
tive to summer temperatures. However, warmer summers and
longer growing seasons would be associated with enhanced
growth rates near the tree line but would not be beneficial to the
southernmost sites. Ultimately, subarctic sites might also become
less sensitive to summer temperatures, as the limitations im-
posed by the short growing season would presumably be consid-
erably reduced. These projections would likely be modulated by
changes in precipitation, as the nonstationary interactions be-
tween temperature, precipitation, and tree growth remain incom-
pletely understood in our study area. For example, as observed in
the southern part of the Quebec boreal forest (Huang et al. 2010;
Tardif et al. 2001), more severe and frequent drought events could
occur under a warmer climate. However, the consequences for
the growth of black spruce remain undefined, and additional re-
search will be required to elucidate the processes involved, per-
haps through higher resolution tree-growth monitoring systems.
Moreover, all these projections must also be modulated by the
influence of climate warming on forest fire and black spruce bud-
worm infestation, which could also influence forest dynamics and
ecology.

Conclusions
The analysis of the relationships between tree rings and climate

in the northern Quebec – Labrador Peninsula region revealed high

Fig. 7. Factorial experiment of the redundancy analysis results. Environmental variables are as follows: distance to the sea (DIST), elevation
(ELE), longitude (LONG), latitude (LAT), total amount of snow (SNOW), total precipitation (PTOT), minimum temperature of the coldest month
(TMIN), and summer mean temperature (TJJA). Figure is provided in colour online.
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spatial variability. This variability was expressed spatially by a
south–north contrast that appears to be related to a winter–
summer temperature gradient and a west–east contrast that is
linked to a precipitation gradient and winter snow cover. Tree
growth in the majority of the stands depends on winter condi-
tions (the temperatures in November, December–January, and
April). Furthermore, only the northernmost stands were mainly
influenced by summer temperatures.

Relationships between tree growth and climate are variable
in space, and the impact of climate change on tree growth will
likely vary according to the region considered. As warmer winter
temperatures are predicted (Intergovernmental Panel on Climatic
Change 2007), black spruce, whose growth is principally governed
by winter and spring conditions, may experience increased growth.
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