Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America

Fabio Gennaretti, Dominique Arseneault, Antoine Nicault, Luc Perreault, and Yves Bégin

Département de Biologie, Chimie et Géographie, Centre d’Études Nordiques, Université du Québec à Rimouski, Rimouski, QC, Canada G5L 3A1; Aix-Marseille Université, Fédération de recherche (CNRS-3098) Ecosystèmes Continentaux et Risques Environnementaux, F-13345 Aix-en-Provence, France; Expertise Mécanique, Métallurgie et Hydro-Éolien, Institut de Recherche d’Hydro-Québec, Varennes, QC, Canada J3X 1S1; and Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, QC, Canada G1K 9A9

Edited by Ellen S. Mosley-Thompson, The Ohio State University, Columbus, OH, and approved May 29, 2014 (received for review January 21, 2014)

Dated records of ice-cap growth from Arctic Canada recently suggested that a succession of strong volcanic eruptions forced an abrupt onset of the Little Ice Age between A.D. 1275 and 1300 [Miller GH, et al. (2012) Geophys Res Lett 39(2):L02708, 10.1029/2011GL050168]. Although this idea is supported by simulation experiments with general circulation models, additional support from field data are limited. In particular, the Northern Hemisphere network of temperature-sensitive millennial tree-ring chronologies, which principally comprises Eurasian sites, suggests that the strongest eruptions only caused cooling episodes lasting less than about 10 y. Here we present a new network of millennial tree-ring chronologies from the taiga of northeastern North America, which fills a wide gap in the network of the Northern Hemisphere’s chronologies suitable for temperature reconstructions and supports the hypothesis that volcanoes triggered both the onset and the coldest episode of the Little Ice Age. Following the well-expressed Medieval Climate Anomaly (approximately A.D. 910–1257), which comprised the warmest decades of the last millennium, our tree-ring-based temperature reconstruction displays an abrupt regime shift toward lower average summer temperatures precisely coinciding with a series of 13th century eruptions centered around the 1257 Samalas event and closely preceding ice-cap expansion in Arctic Canada. Furthermore, the successive 1809 (unknown volcano) and 1815 (Tambora) eruptions triggered a subsequent shift to the coldest 40-y period of the last 1100 y. These results confirm that series of large eruptions may cause region-specific regime shifts in the climate system and that the climate of northeastern North America is especially sensitive to volcanic forcing.

The feasibility of reconstructing volcanic forcing from tree-ring data has been debated, especially in regards to large and successive eruptions. Two of the largest eruptions of the last millennium, the A.D. 1257 Samalas and A.D. 1815 Tambora events, were both closely followed and preceded by additional large eruptions in 1227, 1275, 1284, 1809, and 1835 (8–11). Whereas general circulation model experiments suggest that the impacts of large and successive eruptions might have influenced climate systems for periods ranging from 20 y to several decades, or even centuries (12–16), Northern Hemisphere tree-ring-based temperature reconstructions only display negative temperature anomalies lasting between 2 and 10 y (17–20). Region-specific responses of the climate system to volcanic forcing may in part explain this discrepancy (17). For example, large and successive eruptions may have had stronger impacts on summer temperatures in northeastern North America (hereafter NENA) than elsewhere. An extensive Northern Hemisphere network of tree-ring density chronologies supports this idea, showing that the coldest 1816 temperature anomalies occurred over the Quebec-Labrador Peninsula (21), where they may have persisted for several decades (7). The idea is also supported by the abrupt acceleration of ice-cap growth in the Eastern Canadian Arctic during A.D. 1275–1300, at the onset of the Little Ice Age, as a consequence of a series of eruptions (22). However, the lack of millennial, well-replicated, and temperature-sensitive tree-ring chronologies in the NENA sector precludes the examination of the volcano–temperature relationship in a long-term context with an annual resolution.

Significance

The cooling effect on the Earth’s climate system of sulfate aerosols injected into the stratosphere by large volcanic eruptions remains a topic of debate. While some simulation and field data show that these effects are short-term (less than about 10 years), other evidence suggests that large and successive eruptions can lead to the onset of cooling episodes that can persist over several decades when sustained by consequent sea ice/ocean feedbacks. Here, we present a new network of millennial tree-ring chronologies suitable for temperature reconstructions from northeastern North America where no similar records are available, and we show that during the last millennium, persistent shifts toward lower average temperatures in this region coincide with series of large eruptions.

Author contributions: F.G., D.A., A.N., L.P., and Y.B. designed research; F.G., D.A., A.N., and L.P. performed research; F.G. analyzed data; and F.G. and D.A. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Data deposition: All tree-ring and temperature data can be found in Dataset S1 and have been deposited to the World Data Center for Paleoclimatology, http://www.ncdc.noaa.gov/paleo/paleo.html (study ID noaa-recon-16558).

1To whom correspondence should be addressed. E-mail: Fabio.Gennaretti@uqar.ca.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1324220111/-/DCSupplemental.
In this study, we have built a network of six highly replicated millennial tree-ring chronologies from large stocks of black spruce \(\textit{Picea mariana} \) (Mill.) B.S.P. subfossil trees preserved in lakes of the NENA taiga from which we developed a millennial reconstruction (A.D. 910–2011) of regional July–August temperatures. For this purpose, we selected homogeneous sites with infrequent and well-documented ecological disturbances (23), and sampled homogeneous subfossil and living samples to maximize the robustness of our reconstruction. We then used a Bayesian mixture of probability distributions with dependence (also referred to as hidden Markov models or Markov switching models; see refs. 24 and 25) to detect possible regime shifts in summer temperatures triggered by series of large eruptions and to provide new insights concerning the climate history of NENA during the last 1,100 y.

Results and Discussion

Our summer temperature reconstruction for Eastern Canada (hereafter STREC) closely reproduces the warming trend of July–August temperatures over the study area during the last century (Fig. L4), even when the region experienced one of the strongest increases in summer temperatures worldwide according to the gridded temperature dataset Climate Research Unit (CRU) TS3.20 (26). The correlation between STREC and the gridded July–August temperature data (1905–2011; CRU TS3.20) is highly significant (0.61, \(P < 0.001 \)), even when the instrumental period is split into two subsets (1905–1957 and 1958–2011; Fig. L4). The skill of the reconstruction in reproducing temperature data is indicated by the positive values of the reduction-of-error statistics computed with different calibration periods and on unsmoothed and smoothed datasets (Table S1). Cross-calibration verification confirms that STREC is robust and better predicts low frequencies than high frequencies (Table S1). In our study, the ring-width series of the subfossil and living tree samples were homogenized to remove the bias caused by varying sampling heights (see Methods) and avoid divergence between temperatures and standardized tree growth (Figs. S1 and S2).

Fig. 1. STREC reconstructed values and robustness. Observed (15 cells of the CRU TS3.20 dataset covering our sampling sites) and reconstructed (STREC) July–August temperatures in the taiga of Eastern Canada during the last century (A) and the last 1,100 y (B). Smoothed values are 20-y splines. In A, correlations between brackets refer to smoothed values. Expressed Population Signal (EPS) and Rbar statistics computed over 31-y moving windows are also shown (C), as well as replication among (D) and within (E) chronologies.
correlations show that STREC is mostly valid over the central Quebec-Labrador Peninsula within the NENA sector (Fig. 2).

Volcanism has been the primary factor forcing changes in summer temperatures on the decadal time scale in Eastern Canada during the last millennium. Numerous cooling episodes in STREC are synchronous with episodes already reported in hemispheric temperature reconstructions and simulations in response to strong volcanic eruptions (Fig. S3). The agreement between peaks in the global stratospheric volcanic sulfate aerosol injections (9) and cold anomalies inferred by STREC is also striking (Fig. 3A). A Superimposed Epoch Analysis (SI Methods) demonstrates that the 10 strongest volcanic eruptions of the last millennium produced highly significant cooling episodes in Eastern Canada lasting for about two decades, while less intense volcanic eruptions had a shorter influence (Fig. 4). The 20 postevent summers were significantly colder than the preceding ones for 8 out of the 10 largest eruptions ($P < 0.1$; Table S2). For example, temperature anomalies ranged from −1.3 °C to −3.0 °C in response to the three strongest tropical eruptions of the last millennium (A.D. 1257, 1452/1453, and 1815). With about two cooling episodes per century lasting for 10–20 y with a consequent reduction in tree growth, the volcanic signature in the NENA taiga is comparable to the epidemic signal of the eastern spruce budworm (Choristoneura fumiferana), which is the most destructive insect in the commercial forest of Eastern Canada south of our study area (27). Therefore, volcanic forcing during the last millennium has clearly impacted net primary production and the carbon balance in the NENA forests, at least over the Quebec-Labrador taiga.

Volcanism also strongly influenced century-scale temperature variability in NENA, as shown by our Bayesian analysis of regime shifts in STREC (SI Methods). Two of the strongest eruptions of the last 1,100 y, the A.D. 1257 Samalas and A.D. 1815 Tambora events, which were followed and preceded by other eruptions, coincide exactly with the two most persistent regime shifts detected in STREC. According to the Schwarz criterion (28), STREC is best modeled with a four-state normal Bayesian hidden Markov model, with the two warmer and the two colder regimes largely dominating the A.D. 910–1257 and A.D. 1816–2011 time periods, respectively (Fig. 3B and Fig. S4). Other studies based on tree-ring data have already reported temperature reductions post-A.D. 1257 and post-A.D. 1815 in other regions of the world (see, for example, refs. 29 and 30), but with smaller amplitude and temporal extent than STREC. Indeed, the strong overall cooling trend obtained by fitting a linear regression model to STREC (−1.60 ± 0.11 °C per 1,000 y; estimate ± SE: $P < 0.001$) can be mostly attributed to the A.D. 1257 and A.D. 1815 shifts. Some proxy-based evidence has also shown that a long-term cooling trend due to orbital changes has characterized the climate of the last 2,000 y in many regions of the world (4, 31, 32), including NENA (33). However, this cooling trend has been estimated at about −0.3 °C to −0.5 °C per 1,000 y (4, 32, 33) and is much weaker than the one of STREC. These facts, in addition to the absence of any negative trends in STREC over the A.D. 1257–1815 time period (Fig. S5), highlight the importance of volcanic-induced temperature regime shifts in NENA. Along with volcanism and orbital forcing, additional factors may have contributed to the strong negative trend of STREC and the associated transition from warm to cold regimes (Fig. 3B and Figs. S4 and S5), including solar forcing (19), and the specific regional domain of STREC. Because STREC is based on several sites and because of our data management approach (see Methods), the A.D. 1257 and A.D. 1815 shifts do not seem to be influenced by local nonclimatic disturbances affecting our chronologies (Fig. S6).

A well-expressed Medieval Climate Anomaly (A.D. 910–1257) occurred in NENA before the A.D. 1257 Samalas event. The warmest decades reconstructed by STREC occurred between A.D. 1141 and 1170 (positive anomalies ranging from 0.89 °C to 1.80 °C with respect to the last decade) and between A.D. 1061 and 1095 (0.87–1.19 °C; Table S3). The confidence intervals of STREC for these two periods were almost all higher than the mean temperatures of the last decade (Fig. 1B). The amplitude and timing of the Medieval Climate Anomaly reconstructed by STREC also resemble the results of a pollen-based temperature reconstruction for the North American forest tundra (5), and closely correspond to a period of ice-cap melting in the Eastern Canadian Arctic (22) (Fig. 3C). Collectively, these complementary data sources demonstrate that a major and prolonged climatic shift occurred over the NENA sector after a series of 13th century volcanic eruptions centered around the A.D. 1257 Samalas event. This shift marked the end of the Medieval Climate Anomaly and the beginning of the Little Ice Age in this sector.

Similarly, the series of eruptions centered around the A.D. 1815 Tambora event shifted summer temperatures to the coldest 40-y period of the last 1,100 y in NENA. The A.D. 1815–1857 episode was extremely cold in Eastern Canada, with decadal anomalies reconstructed by STREC ranging from −2.76 °C to −3.58 °C relative to the last decade (Table S3). Low solar activity during this period, that started during the Dalton Minimum, could have concurred to cause the cooling episode (34). However, the regime shift observed in STREC coincides with the A.D. 1815 Tambora eruption (Fig. 3B and Fig. S4). The same climate shift has already been observed in a 263-y tree-ring-based summer temperature reconstruction whose sampling sites are 400 km eastward from our study sites (7), whereas a pollen-based temperature reconstruction suggests that this period was the coldest of the last 2,000 y in the North American boreal forest and forest–tundra (5). This climate shift was probably limited to the NENA sector as STREC diverges from the ensemble of Northern Hemisphere reconstructions and simulations after A.D. 1816 (Fig. S3 C and D).

Although the last century reconstructed by STREC was warmer than the early 19th century, it was colder than the
Medieval Climate Anomaly (the difference between the average summer temperature of the 12th century and of the last 100 y is 1.66 °C, P < 0.001, according to the one-tailed Wilcoxon rank–sum test). In fact, STREC shows that the NENA sector experienced relatively cold conditions until late into the 20th century. This persistence of cold conditions over NENA is also suggested by the strong warming trend of the last 100 y denoting a colder starting point (Fig. 1 A and B), as well as by permafrost growth during the mid-20th century on the southern shore of Hudson Strait (35) and by the lack of postfire forest recovery over the last 900 y at the northern Quebec treeline in contrast to what occurred during the Medieval Climate Anomaly (36, 37). The warming trend in our study area has accelerated over the last 30 y (+0.7 °C per decade according to the dataset CRU TS3.20). If this trend continues, then summer temperatures will be similar to the maximum of the last 750 y during the next decade and to the maximum of the last 1,100 y during the following one (based on STREC and the data of Table S3).

Several hypotheses have been suggested to explain why post-eruption temperature anomalies reconstructed from tree-ring data generally express higher values than expected, including regional variations in response to volcanic events, autocorrelation in ring-width series (17, 18), failure of growth rings to form during volcano-induced cold summers (20), and increased tree growth caused by volcano-induced diffuse radiation (38). In this study, we observed a strong response of ring-width data to volcanic activity, with the amplitudes and duration of negative anomalies (including persistent regime shifts) similar to model predictions. Diagnostic light rings are frequent in black spruce trees of our study area (39), thus allowing for a rigorous control of ring dating and for identifying the occurrence of missing rings. In addition, although autocorrelation in ring-width chronologies of black spruce is high (Table 1), the results of a simple model show that its effects on the amplitude and duration of reconstructed negative temperature anomalies after volcanic events are low (Fig. S7). Instead, our results suggest that the climatic impacts of eruptions vary among regions of the Northern Hemisphere and that the NENA sector is especially sensitive to these impacts compared with Eurasia, where the majority of temperature-sensitive tree-ring chronologies have been previously developed. This idea is also supported by recent simulation experiments (12–16, 22), which show that large and successive eruptions may trigger cold episodes whose duration may be sustained by complex and variable sea–ice–ocean feedbacks in the North Atlantic and that the resultant northward heat transport would tend to be more severely attenuated in the NENA than in the Eurasian sectors.

Methods

Our sampling area is situated in the Eastern Canadian taiga between latitudes 53.8°N and 54.6°N and longitudes 70.2°W and 72.5°W (Table 1). According to the gridded temperature dataset CRU TS3.20 (26), this region has experienced one of the fastest temperature increases on Earth during the last century. The mean July–August temperature, which is the object of our reconstruction, has increased by an average of 0.68 ± 0.15 °C and 0.19 ± 0.02 °C (estimate ± SE) each 10 y during the last 30 and the last 110 y, respectively.

To implement our network of tree-ring chronologies, 1782 black spruce [Picea mariana (Mill.) B.S.P.] subfossil trees were sampled from six lakes of the study area and cross-dated to the calendar year. Particular care was taken in selecting and replicating sites and trees to construct a dataset
suitable for Regional Curve Standardization (RCS). The RCS method preserves long-term climate trends in tree-ring chronologies built with short-lived species, but requires high replication of trees belonging to a homogeneous population not disturbed by external factors (40). The selected sites were all characterized by an old-growth riparian forest on the side of the lake protected from dominant winds, an abrupt forest–lake transition, large stocks of subfossil trees in the littoral zone, and a well-documented low fire recurrence (23, 41). This allowed the development of an exceptional network of climate-sensitive tree-ring data comprising six local chronologies in the same region (one per lake), each including from 75 to 586 subfossil trees and spanning from 1,238 to 1,440 y (Table 1). The living trees extending the chronologies to the present day (25 trees per site) were sampled at the same region (one per lake), each including from 75 to 586 subfossil trees. The analog method used to reconstruct these gaps is commonly used in palaeoclimatology to estimate missing values in proxy-climate matrices. For years where missing values are present, the procedure identifies the most similar years in the calibration period, i.e., all other years without missing values, which are then weighted according to their similarity and used to reconstruct the gaps (44). The measure of similarity is based on the Euclidian distance.

We used the CRU TS3.20 climate dataset (26) to calibrate our reconstruction. The first four years (1901–1904) were excluded because of a poor fit with the tree-ring indexes due to the lack of operating weather stations at the beginning of the last century near the study area. The climate reconstruction method was based on a linear scaling procedure. Each local RCS chronology was rescaled so that its mean and SD matched those of the July–August mean temperature in the calibration period (1905–2011). The final STREC was then obtained by computing the median of the six local reconstructions. This procedure attenuated the influence of local nonclimatic disturbances, as the median of the six reconstructions is not sensitive to outliers. It also obtained better cross-calibration verification results (1905–1957 vs. 1958–2011) than a reconstruction based on a partial least squares regression, especially when considering low frequencies (i.e., smoothed datasets; Table S1). Only reconstructed values subsequent to A.D. 910 were retained to limit the analyzed period to the statistically reliable interval (overall replication >53 individual series and Expressed Population Signal >0.85; Fig. 1 C and D). Due to the fast temperature increase in the study area during the 20th century, the reconstructed values in the calibration encompassed a range of 4.3 °C (from 9.6 °C to 14.0 °C), and 86% of the total STREC reconstructed values are inside this range.

We generated realistic time-varying confidence intervals considering two kinds of errors (Fig. 1 A and B). The first one depends on the nonperfect fit between observed and reconstructed values over the verification periods and was computed as the mean root-mean-square error between the two datasets. The second one is due to the variation over time of the strength of the common climate signal for each of the six local chronologies and was computed each year as the interval among the four central reconstructed values from the six chronologies. The consideration of this error produces a time-varying 60% confidence interval.

![Figure 4. STREC responses to volcanic eruptions. Dimensionless normalized 3-y composites, which are the result of the Superimposed Epoch Analysis showing summer temperature responses in Eastern Canada to the 10 strongest (A) and the 10 next strongest (B) volcanic eruptions of the last millennium deduced by ref. 9 (see SI Methods). Each 3-y composite is labeled with the year nearest to the eruption year (e.g., 0 stands for the 3-y composite composed of years 0, 1, and 2 from eruption). Confidence ranges (90%, 95%, 99%) are indicated by horizontal lines. Black and gray columns mark preeruption and posteruption composites, respectively.](image)

![Normalized 3-year composite](image)

![Normalized 3-year composite](image)

Fig. 4. STREC responses to volcanic eruptions. Dimensionless normalized 3-y composites, which are the result of the Superimposed Epoch Analysis showing summer temperature responses in Eastern Canada to the 10 strongest (A) and the 10 next strongest (B) volcanic eruptions of the last millennium deduced by ref. 9 (see SI Methods). Each 3-y composite is labeled with the year nearest to the eruption year (e.g., 0 stands for the 3-y composite composed of years 0, 1, and 2 from eruption). Confidence ranges (90%, 95%, 99%) are indicated by horizontal lines. Black and gray columns mark preeruption and posteruption composites, respectively.

Table 1. Sampling sites and tree-ring chronologies used for STREC

<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude, degrees</th>
<th>Longitude, degrees</th>
<th>Number of trees, subfossil/living</th>
<th>Length, A.D.</th>
<th>MSL, years ± SD</th>
<th>Mean ring width, 1/100 mm ± SD</th>
<th>Mean correlation, mean ± SD</th>
<th>Lag1 AC</th>
<th>AR order</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>+53.86</td>
<td>–72.41</td>
<td>190/25</td>
<td>642–2011</td>
<td>106 ± 32</td>
<td>39 ± 24</td>
<td>0.43 ± 0.25</td>
<td>0.84</td>
<td>4</td>
</tr>
<tr>
<td>L12</td>
<td>+54.46</td>
<td>–70.39</td>
<td>220/25</td>
<td>572–2011</td>
<td>101 ± 32</td>
<td>42 ± 23</td>
<td>0.45 ± 0.23</td>
<td>0.78</td>
<td>9</td>
</tr>
<tr>
<td>L16</td>
<td>+54.10</td>
<td>–71.63</td>
<td>75/25</td>
<td>112 ± 36</td>
<td>37 ± 20</td>
<td>0.46 ± 0.25</td>
<td>0.75</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>L18</td>
<td>+54.25</td>
<td>–72.38</td>
<td>419/25</td>
<td>596–2011</td>
<td>105 ± 38</td>
<td>38 ± 26</td>
<td>0.40 ± 0.27</td>
<td>0.76</td>
<td>4</td>
</tr>
<tr>
<td>L20</td>
<td>+54.56</td>
<td>–71.24</td>
<td>586/25</td>
<td>653–2011</td>
<td>102 ± 36</td>
<td>40 ± 24</td>
<td>0.41 ± 0.23</td>
<td>0.72</td>
<td>9</td>
</tr>
<tr>
<td>L22</td>
<td>+54.15</td>
<td>–70.29</td>
<td>292/25</td>
<td>650–2011</td>
<td>104 ± 38</td>
<td>39 ± 25</td>
<td>0.42 ± 0.25</td>
<td>0.73</td>
<td>6</td>
</tr>
</tbody>
</table>

Lag1 AC and AR order are computed over the time period retained for STREC (A.D. 910–2011). AR order, the order selected by the Akaike Information Criterion of the autoregressive model fitted to the RCS chronology; Lag1 AC, lag 1 autocorrelation of the RCS chronology; mean correlation, average correlation between standardized individual series and their respective local RCS chronology; MSL, mean segment length.
The volcanic signature in STREC was analyzed using Superimposed Epoch Analysis (SEA) and Bayesian hidden Markov models. We used SEA to test the agreement between the strongest volcanic eruptions of the last millennium and corresponding cooling episodes in STREC. Our SEA was performed in the R environment as described in SI Methods. We used Bayesian hidden Markov models to identify sudden changes in the STREC time series. Such models provide an explicit mechanism to represent transitions between different states and allowed the data to be classified into distinct regimes. The Schwarz criterion is used to identify the number of states and the probability distribution that best fits the data. This approach is briefly described in SI Methods.