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Abstract

Questions: What were the pre-industrial forest landscape composition pat-

terns? Which factors had structured the pre-industrial landscape patterns? How

have pre-industrial landscape patterns and post-industrial disturbances con-

trolled composition changes?

Location: An area of 4175 km2 at the temperate–boreal forest interface of

southwest Quebec, Canada.

Methods: Reconstruction of the pre-industrial composition is based on an origi-

nal early land survey data set (1874–1935). Composition changes were com-

puted by comparing historical data with modern forest inventories. Landscape-

scale patterns and composition changes were assessed through spatially con-

strained clustering analysis.

Results: Pre-industrial forest composition was structured across the landscape

by the combination of environmental gradients (topography, deposits, drainage,

etc.) and recurrence of fire. Frequency and intensity of fires weremost likely the

main drivers of forest dynamics and composition across the landscape. Black

spruce (Picea mariana) and balsam fir (Abies balsamea) dominated hilly areas

affected by former fires; aspen (Populus tremuloides) dominated lowlands follow-

ing recent fire. White cedar (Thuja occidentatlis) and pines (Pinus spp.) dominated

areas probably affected by small surface fires. New disturbance regimes that

were subsequently incurred by human activities have shifted the pre-industrial

landscape mosaic and have led to the current landscapes. Composition changes

included a replacement of conifers by early successional species within settled or

burned areas, and the maintenance of conifers and an increase in cedar domi-

nance in areas affected by partial disturbance.

Conclusions: Post-industrial composition changes must be perceived as com-

plex interactions between pre-industrial landscape patterns and natural and

human disturbances. Such land-use legacies could be important drivers of future

landscape change and should be investigated and considered when predicting

future climate-induced ecological changes.

Introduction

Since thousands of years before the industrial era, human

populations have altered the forest naturalness through

their use of lands and resources from northern boreal for-

est (Johnson & Miyanishi 2012) to rain forest (Willis et al.

2004). During the last few centuries, industrialization and

land-use intensification has dramatically transformed the

global forest cover (Houghton 1994; Foley 2005; Ellis

et al. 2010). In northeastern America, native populations

have modified the pre-settlement forest landscape

through use of fire, forest clearing, wild plants and animal

population management (Day 1953; Denevan 1992, 2011;

Delcourt & Delcourt 2004; Abrams & Nowacki 2008).

Thereafter, European colonial settlement contributed to

major transformation of forest landscape characteristics,
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which are generally considered as younger and more frag-

mented than pre-industrial landscape (Mladenoff et al.

1993; Whitney 1994; Foster et al. 1998; Lorimer 2001).

Composition changes that have been observed since

pre-industrial times in eastern North America are mainly

the result of human activities (Thompson et al. 2013;

Nowacki & Abrams 2015). Yet, significant climate change

has also occurred between the pre-industrial period and

the present time in North America (Mann & Jones 2003;

Moberg et al. 2005; Gennaretti et al. 2014), and the rela-

tive importance of land-use and climate effects on vegeta-

tion changes over the last several centuries remains a

lively debate (Pederson et al. 2014; Abrams & Nowacki

2015; Nowacki & Abrams 2015). Biogeographic transition

zones also appear to be especially sensitive to climate

change (Parmesan et al. 2005; Beckage et al. 2008), such

as the temperate–boreal forest interface (Fisichelli et al.

2014; Reich et al. 2015).

Understanding the development of current forest

landscapes under disturbance regimes that have been

modified by human activities is fundamental to antici-

pating how present-day forests will evolve in a global

change context (Foster et al. 2003; Schrott et al. 2005;

Rhemtulla & Mladenoff 2007; Gillson 2009; Ewers et al.

2013). Many studies have used historical land survey

records to reconstruct pre-industrial forest composition

(Whitney 1994), and some have developed methodolog-

ical tools to map and interpret these data at the land-

scape scale (Manies & Mladenoff 2000; Schulte et al.

2002; He et al. 2006; Rhemtulla et al. 2007; Dupuis

et al. 2011). At the landscape scale, pre-industrial forest

composition was commonly structured by the combina-

tion of environmental gradients and disturbance history

(Lewis & Ferguson 1988; White & Mladenoff 1994; Lor-

imer 2001; Schulte et al. 2002, 2007; Abrams & Now-

acki 2008; Boucher et al. 2009; Josefsson et al. 2010).

Different land-use conditions subsequently may have

led to different dynamic trajectories across the landscape

(Wallin et al. 1994; Bellemare et al. 2002; Turner et al.

2003; Hermy & Verheyen 2007; Boucher & Grondin

2012; Boucher et al. 2014; Grondin et al. 2014).

Accordingly, to understand current landscapes, ecolo-

gists should consider interactions between (1) pre-indus-

trial landscapes patterns, (2) environmental gradients

and (3) natural and human disturbances.

In this studywe reconstruct pre-industrial forest compo-

sition at the temperate–boreal forest interface, based on an

original data set of early land survey records. Our aims

were to highlight both regional changes and the existence

of distinct pre-industrial landscapes. We discuss three

questions: (1) which factors had structured the pre-indus-

trial landscape patterns; (2) how was the pre-industrial

landscape modified by native populations; and (3) how

have interactions between pre-industrial patterns and

20th century disturbances controlled composition changes

to produce present-day forest landscape patterns?

Study area

The study area covers 4175 km2 in the T!emiscamingue

region, which is located in southwestern Quebec

(47°300 N, 79°000 W; Fig. 1a). Mixed forests in the region

represent the transition zone between northern temperate

hardwood and southern boreal conifer-dominated forests

(Rowe 1972), and which corresponds to the balsam fir–
yellow birch bioclimatic domain according to the provin-

cial classification system (Robitaille & Saucier 1998). Sur-

face deposits are mainly divided between clays deposited

by the pro-glacial Barlow Lake in lowland areas (Vincent &

Hardy 1977) and glacial till along with rocky outcrops in

upland areas. According to data averaged from four

weather stations in the study area, mean annual tempera-

ture is 2.7 °C and mean annual precipitation is 888 mm

(1981–2010 time period).

In this region, the topographic gradient is linked to fac-

tors that influence the establishment and growth of differ-

ent tree species, such as drainage, nutrient availability, soil

depth, microclimate (Fraser 1954; MacHattie & McCor-

mack 1961; Brown 1981) and disturbances. The natural

fire rotation period has been estimated to be about 200-yrs

long in the region (Grenier et al. 2005), and spruce bud-

worm (Choristoneura fumiferana) outbreaks have also been

identified as an important disturbance of natural forest

dynamics over the last several centuries (Bouchard et al.

2005, 2006a,b).

Native populations have occupied the study area for at

least 5000 yrs (Riopel 2002). The Algonquin/Anishinaabe

tribes were nomadic hunter-gatherers, and totalled from

about 800 to a few thousand individuals (Couture 1983;

Riopel 2002), but their impact on the forest remains

unknown. From the 18th century, the region was fre-

quented by Euro-Americans, who were engaged in the

fur trade. Logging did not begin until 1840, and was

mainly focused on selective cutting of tall pine trees until

1917 (Riopel 2002). From 1917 until the end of the 20th

century, partial cutting of spruces (Picea spp.) and balsam

fir (Abies balsamea) for wood pulp became the main log-

ging activity following the construction of a paper mill in

the city of T!emiscaming (Lienert 1966). Clear-cutting

practices emerged with the mechanization of forestry in

the 1970s. European settlement evolved in parallel with

the forest industry, and the Euro-American population

grew from a few hundred people in 1890 to nearly 30 000

in 1950 (Riopel 2002).
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Methods

Database construction

This study is based on 36 logbooks from the surveys of 16

townships and ten forest concessions by 16 different sur-

veyors between 1874 and 1935. In the province of Quebec,

public lands were divided into townships of about

16 km 9 16 km (10 miles 9 10 miles) and further subdi-

vided into parallel ranges that were 1.6-km wide. Surveys

were conducted along the boundaries of the township and

range lines. Forest concessions varied in size, but only their

boundaries were surveyed. Three observation types con-

cerning forests are found in these archives: taxon lists (e.g.

pine, spruce, white birch and a few maples), forest cover

types (e.g. hardwood, softwood, etc.) and disturbance

observations (e.g. burned, windthrow, etc.). In this study,

only observations that mentioned taxa were selected.

The historical database comprises 5207 observations that

are unevenly spread across the study area (Fig. 1b), and

which mention at least one tree taxon. Observations are

divided into two geometric types: (1) line descriptions that

clearly indicate a beginning and an end, and (2) regularly

or irregularly distributed point observations along the sur-

veyed lines. In order to incorporate these two observation

types into the same database, point observations were

weighted, based on their mean spacing (mean of distances

to the previous and next observations), while the weight

of each line description corresponded to its lengths (Dupuis

et al. 2011). For all observations, a rank was assigned to

each taxon listed according to its position in the taxon list,

assuming that this position reflects their relative basal area

(Terrail et al. 2014). These data were then precisely geo-

referenced as lines or points with modern cadastral maps

built from these early land surveys.

To assess changes between pre-industrial and modern

composition, data from the historical survey records were

compared with the Quebec government’s forest invento-

ries from the last three decades (1980, 1990 and 2000).

These inventories are based on 0.04-ha plots that are dis-

tributed proportionally according to the surface area of

different types of productive forest stands (capable of pro-

ducing at least 30 m3!ha"1 timber in <120 yrs). Within

(a) (b)

Township lines
Concession lines

Township points
Concession points

Fig. 1. (a) Location of the study area. (b) Study area and distribution of historical survey data.
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the plots, all stems >2 cm DBH (1.3 m) of each species

are measured and inventoried, and used here to calculate

basal area (m2!ha"1) by species. Finally, a rank was

assigned to each taxon according to its relative basal area

within modern plots. Some species (spruces, maples,

pines, poplars) within the modern database were grouped

at the genus level to match the taxa mentioned by sur-

veyors. Taxa mentioned in less than 5% of taxon lists of

both historical and modern databases were grouped as

‘others’.

Data analysis

Three different composition indices were computed for

both historical and modern databases. First, an overall

prevalence index was computed as the percentage occur-

rence of each taxon in all taxon lists, regardless of its rank

in those lists. Second, a frequency index (Fir) was com-

puted for each taxon occurring in the first four ranks of

enumeration in the taxon lists (i.e. r = 1, 2, 3, 4; Scull &

Richardson 2007) using the formula:

Fir ¼ ðNir=MrÞ & 100

where Nir is the number of times taxon i is ranked at posi-

tion r, and Mr is the total number of observations that

include at least r taxa. Third, the dominance index repre-

sents the frequency of occurrence of each taxon i at the

first ranking position (i.e. r = 1).

To compare pre-industrial and modern compositions at

the landscape scale, the study area was divided into 25-

km2 cells (5 km 9 5 km). Prevalence and dominance

indices were computed for each epoch and each cell with

at least five observations. This resulted in two grids, respec-

tively containing 129 and 155 cells for the pre-industrial

and modern periods (modern inventories were more uni-

formly spread, allowing a larger number of cells to be

retained).

Spatially constrained clustering (Legendre & Fortin

1989; Legendre & Legendre 2012) was then used to

determine geographically homogeneous areas of pre-

industrial and modern composition. The test determines

agglomerative clusters, with a spatial contiguity con-

straint, for a distance matrix that is calculated from multi-

variate data (Legendre 2011; Legendre & Legendre 2012).

Prevalence and dominance index values of each taxon

and each cell were converted to a Euclidean distance

matrix. Clustering was then computed on the basis of this

matrix, constrained by a geographic distance matrix

between cells. Optimal numbers of groups were chosen

by cross-validation to minimize residual error. Within

each group, prevalence and dominance indices were re-

computed and expressed as diagrams attached to the

results maps (Fig. 2a,c).

Spatially constrained clustering was used with 11 envi-

ronmental and historical variables. The 11 variables repre-

sent three types of surface deposits (lacustrine clay, glacial

till and rocky deposits), three types of drainage, four vari-

ables related to settlement (agricultural land, urban land,

paved roads and secondary roads) and one variable repre-

senting burned areas during the 20th century (geo-refer-

enced data from aerial photographs and remote sensing

data dated from 1924 to 2011; SOPFEU database). The vast

majority of burned areas dated from the period 1930–
1950, and mainly from the 1930s. Apart from paved and

secondary roads, which were expressed in kilometres, all

other variables were expressed as percentages of land area

per cell. This data matrix was standardized and then con-

verted to a Euclidean distancematrix prior to spatially con-

strained clustering. All clustering analysis were performed

with the ‘const.clust’ package (v 1.2; http://numericalecol-

ogy.com/rcode) included in the R freeware (v 3.1.2; R

Foundation for Statistical Computing, Vienna, AT; http://

www.r-project.org/.).

Results

In the pre-industrial era (Table 1), spruces (Picea spp.), bal-

sam fir (Abies balsamea) and paper birch (Betula papyrifera)

were the most frequently mentioned taxa (78.1–65.7% of

all taxa lists). Pines (Pinus spp.), poplars (Populus spp.),

white cedar (Thuja occidentalis) and yellow birch (Betula

alleghaniensis) were also common (31.5–14.2%). The most

dominant taxa (listed as rank 1) were spruces and fir

(46.5% and 20.8%, respectively). Spruces were more fre-

quently mentioned at rank of 1 than ranks 2–4, indicating
that they tended to dominate the canopy when present.

Comparison of pre-industrial and modern forest compo-

sition highlights significant changes at the regional scale

(Table 1). Maples (Acer spp.) and poplars have experienced

the largest prevalence increases (+47.0% and +38.5%,

respectively). With regard to dominance, poplars and

paper birch increased by +19.9% and +8.1%, while spruce

and fir decreased by"27.6% and"7.8%.

At the landscape scale, spatially constrained clustering

highlights a strong pattern within the composition of the

pre-industrial forests (Fig. 2a). In group 1a the most fre-

quent and dominant taxa were spruces, fir and paper

birch. Group 2a differed from the first group by its stronger

balsam fir dominance. Dominated by white cedar, pines

and poplars, Group 3a clearly stood out from the rest of the

study area. Group 4a covered the southern portion of the

study area and was dominated by poplars, spruce and

paper birch. In contrast, the modern era (Fig. 2c) com-

prises five groups dominated by conifers, mainly spruces
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and fir, but also including two groups where white cedar is

among the three dominant taxa (Groups 4c and 5c). The

remaining four modern groups cover the rest of the study

area, and are dominated by poplars, spruces, paper birch

and fir.

Spatially constrained clustering based on environmental

and historical variables retained six groups (Fig. 2b).

Group 1b correspond to mixed drainage-deposit hills not

settled or burned during the 20th century. Groups 2b and

3b represent areas of mixed drainage-deposit hills which
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Fig. 2. Spatially constrained clustering groups with pre-industrial (a) and modern (c) compositions. Spatially constrained clustering groups with

environmental and historical variables (b). For each taxon, histograms represent dominance index (header in full colour bar) and frequency index (bottom

light colour bar) in percentage for composition groups (a and c) and differences between modern and pre-industrial composition for environment–
historical groups (b). Composition groups are captioned by their first three dominant taxa (Spr: spruce, Fir: balsam fir, Bir: paper birch, Pop: poplars, Ced:

white cedar, Pin: pines, Lar: larch,Oth: other). Note that histograms (b) of the taxa captioned by a * are represented on a smaller scale ("15%, +15%).

Table 1. Total prevalence index and ranked frequency index (Fir) of major taxa throughout the study area for pre-industrial (1874–1935) and modern (1980

–2009) periods. The dominance index corresponds to Fir = 1.

Taxa 1874–1935 (n = 5207) 1980–2009 (n = 4749)

Prevalence Fir (%) Prevalence Fir (%)

(%) 1 2 3 4 (%) 1 2 3 4

Spruces 78.1 46.5 22.9 11.0 8.6 71.7 18.9 16.2 17.1 17.1

Balsam Fir 70.4 20.8 44.9 11.6 9.4 70.7 13.0 16.9 20.3 17.4

Pines 31.5 5.2 4.0 5.2 15.3 24.2 8.0 5.2 4.6 4.8

White Cedar 19.8 3.1 2.3 5.1 16.3 15.2 5.2 2.7 2.3 3.1

Larch 8.0 1.9 3.3 2.4 2.2 4.7 0.7 1.3 1.2 1.5

Poplars 24.8 8.7 4.0 5.0 17.3 63.4 28.6 15.3 10.5 7.3

Paper Birch 65.7 7.3 15.0 55.4 17.3 78.8 15.4 23.0 20.9 17.7

Yellow Birch 14.2 1.7 3.5 4.2 13.5 6.9 1.6 1.5 1.2 1.5

Maples 1.1 0.1 0.1 0.1 0.1 48.1 3.1 8.3 12.3 16.4

Others 4.6 4.7 0.0 0.0 0.0 46.2 5.5 9.5 9.6 13.2

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Journal of Vegetation Science
474 Doi: 10.1111/jvs.12373© 2016 International Association for Vegetation Science

Pre-industrial forest landscape patterns and post-industrial change V. Danneyrolles et al.



have largely burned over the period 1930–1950. Finally,
groups 4b, 5b and 6b were mostly settled during the 20th

century (cropland and urbanization) in lowlands domi-

nated by lacustrine clay deposits.

These environmental–historical groups highlight strong
patterns of compositional changes across the landscape.

Groups 2b and 3b, which were burned between 1930 and

1950, experienced a sharp decrease in prevalence and

dominance of spruces and fir, and concomitant strong

increases of poplars. Conifer dominance generally

decreased slightly in settlement groups (4b, 5b and 6b),

while the prevalence and dominance of poplars and paper

birch increased. Group 1b, which was not burned or settled

during the 20th century, exhibited a slight decrease in

spruces and fir and also experienced an increase in domi-

nance of white cedar. Finally, maples experienced a sharp

increase in prevalence over time in all groups.

Discussion

Pre-industrial composition and vegetation changes at

the regional scale

Our results show a regional strong increase in early succes-

sional (poplars, paper birch) and mid-successional

(maples) deciduous taxa at the expense of pre-industrial

dominant conifers (mainly spruces and fir). Regional pre-

industrial forest composition and post-industrial changes

similar to our study area have been widely documented

across eastern temperate and boreal North America (Sic-

cama 1971; Lorimer 1977; Abrams 1998; B€urgi et al. 2000;

Jackson et al. 2000; Dyer 2001; Cogbill et al. 2002; Fried-

man & Reich 2005; Pinto et al. 2008; Dupuis et al. 2011;

Thompson et al. 2013). Studies in northern Europe have

reported a post-industrial rejuvenation of forest land-

scapes, although modern forest management and inten-

tional suppression of deciduous trees have shifted

composition from mixed to coniferous forest (€Ostlund

et al. 1997; Axelsson et al. 2002; Lilja & Kuuluvainen

2005).

The land survey records used in this study were con-

ducted from the end of the Little Ice Age (Mann & Jones

2003; Moberg et al. 2005; Gennaretti et al. 2014). Regio-

nal annual mean temperatures have since increased by

approximately 1 °C (http://berkeleyearth.lbl.gov/loca-

tions/47.42N-79.34W, accessed 23 Jul 2015). Eastern

Canadian climate has also become moister (Tardif & Berg-

eron 1997; Zhang et al. 2000; Girardin et al. 2004) and,

combined with fire suppression policies, has led to a sharp

decrease in fire frequency (Bergeron & Archambault 1993;

Bergeron et al. 2006). Such changes could have shifted

regional composition from cold-adapted to warm-adapted

taxa and from fire-adapted to fire-sensitive taxa (Nowacki

& Abrams 2008; Hanberry et al. 2012). However, these cli-

mate-related changes do not seem to have significantly

influenced our results since the taxa having experienced

the greatest increase (poplars and paper birch) are boreal

fire-adapted species (Perala 1991; Safford et al. 1991).

Increase in prevalence of maples (mostly red maple, Acer

rubrum; according to modern inventories) could be due to

rising temperatures (Tremblay et al. 2002; Fisichelli et al.

2014; Zhang et al. 2015) and have also been associated

with the decrease in fire activity (Nowacki & Abrams

2008). On the other hand, red maple is a ‘super generalist’

species that is largely favoured by disturbance (Walter &

Yawney 1991; Abrams 1998; Fei & Steiner 2009), even

including fire at its northern range limit in the study area

(Zhang et al. 2015).

Pre-industrial composition at the landscape scale

Spatially constrained clustering analysis highlights spatial

structure in pre-industrial composition at the landscape

scale (Fig. 2a). Most of the study area was dominated by

spruces (Group 1a). Currently, black spruce (Picea mariana)

is the main species in the study area, so it is very likely that

it also dominated the pre-industrial landscape. Abundant

glacial and rocky deposits in this hilly region and frequent

fires in the pre-industrial period (Grenier et al. 2005) pro-

moted black spruce due to its semi-serotinous cones that

allow it to establish after fires (Viereck 1983; Viereck &

Johnston 1990) and to maintain strong dominance in the

landscape (De Grandpr!e et al. 2000; Pham et al. 2004;

Bouchard et al. 2008; Cyr et al. 2012).

The area that was dominated by trembling aspen (cur-

rently the main species present in the area, Group 4a) in

the pre-industrial landscape corresponded to an early suc-

cessional stage and, in fact, was described as an area of ‘old

burnt’ by surveyors in the 1880s (data not shown), which

probably corresponded to a 1870s fire. Trembling aspen is

a fire-adapted species and is favoured by lacustrine clay

deposits (Bergeron & Charron 1994; Bergeron 2000) that

are abundant in these lowland area.

Finally, the area co-dominated by white cedar and pines

in the pre-industrial period represents a contradictory asso-

ciation (Group 3a). White cedar is a fire-sensitive and

shade-tolerant late successional species (Johnston 1990;

Hofmeyer et al. 2009), while white pine (Pinus strobus) and

red pine (Pinus resinosa), which are currently the main pine

species in this area, are fire-adapted species (Wendel &

Smith 1990; Flannigan 1993; Abrams 2001). Small-scale

surface fires could maintain uneven-aged stands of white

pine (Quinby 1991; Abrams 2001), and could also allow

the maintenance of white cedar in the landscape. Land-

scapes surrounding large lakes such as Lake T!emis-

camingue may show strong spatial variation in terms of

fire frequency and intensity compared to adjacent main-
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land landscapes (Bergeron 1991; Drobyshev et al. 2010)

and could therefore explain the occurrence of small surface

fires in this area.

Native Americans and naturalness of the pre-industrial

landscape

Land-use practices of Algonquin-Anishinaabe population

inhabiting the study area during pre-industrial times are

not documented. However, use of fire has been reported as

a common practice for Algonquin tribes (Clark & Royall

1996; Williams 2003; Munoz & Gajewski 2010). Hunter-

gatherer populations usually burned small patches for

habitation, to improve travelling and to manage wild ani-

mal or plant populations (Lewis & Ferguson 1988; Gottes-

feld 1994). Although large crown fires which have widely

favoured black spruce or poplars seem mainly linked to

fire-favourable climatic conditions at the end of the Little

Ice Age (Bergeron et al. 2006; Clifford & Booth 2015), the

Lake T!emiscamingue area was an important transit path

and summer occupation spot during pre-industrial times

(Riopel 2002), and white cedar and pines which co-domi-

nated in the area were important keystone species for

Algonquin communities (Danielsen 2002; Uprety et al.

2013a,b). Consequently, it seems likely that the Algonquin

population used to manage this area and that they pro-

moted dominance of white cedar and pines through small-

scale surface burning or other management practices.

Localized modification by the native community within

the forest landscape have been widely documented across

northeastern America (Delcourt & Delcourt 2004; Black

et al. 2006; Munoz et al. 2014) and northern Europe

(Josefsson et al. 2009, 2010; Rautio et al. 2016).

Post-industrial changes at landscape scales

Areas that were widely burned during the period 1930–
1950 (mostly in the 1930s) recorded a shift from domi-

nance of fire-adapted black spruce to early successional

deciduous trembling aspen. The likely explanation for this

shift is the high logging activity that prevailed during the

1920s and 1930s in the study area (Lienert 1966). These

cuts may have removed much of the black spruce aerial

seed bank, which allowed trembling aspen to become

dominant after the 1930s large fires. Settled territories also

showed a shift from dominance of main pre-industrial con-

ifers to trembling aspen and paper birch (Groups 4b, 5b

and 6b), which could clearly be explained by disturbances

related to settlement (land clearing, logging, settlement

fires, etc.).

The northeastern part of the study area, which neither

burned nor was settled during the 20th century, shows a

smaller decrease in black spruce pre-industrial dominance

compared to burned areas, and an increased dominance of

white cedar. Increased dominance of white cedar can be

attributed to spruce budworm outbreaks (Frelich & Reich

1995; Bergeron 2000; Bouchard et al. 2006b), whose main

hosts are balsam fir and spruces, as well as former partial

cuts of large pine and spruce trees (Heitzman et al. 1997;

Larouche et al. 2011).

Implication for forest restoration andmanagement

In this regional context, composition restoration through

forest management should aim to promote conifer domi-

nance. This could be achieved through partial cutting in

mixed stands dominated by trembling aspen to accelerate

succession towards coniferous stands (Man et al. 2008;

Bose et al. 2014). However, considering the potential

impacts of climate change, it would be important to develop

an adaptive restoration plan (Harris et al. 2006; Millar et al.

2007; Choi et al. 2008). The pre-industrial dominance of

some conifers (black spruce, pine) was largely the result of

higher fire frequency compared to those anticipated for the

future (Bergeron et al. 2006). Moreover, the increase in

deciduous species abundance throughout the 20th century

probably accentuated this phenomenon by decreasing for-

est fire susceptibility (Nowacki & Abrams 2008; Terrier

et al. 2013). Restoration measures could seek to promote

dominance of late successional conifers and deciduous spe-

cies, which are not dependent on fire (balsam fir, white

spruce, white cedar, yellow birch).

Conclusion

Combinations of environmental gradients, recurrence of

natural disturbance and perhaps Native Americans’ land

use have structured distinct pre-industrial landscapes. Fre-

quency and intensity of fires were the main drivers of for-

est dynamics and composition across the landscape. Fire

remained an important driver of post-industrial composi-

tional changes, but the appearance of Euro-American dis-

turbances, including logging and settlement fires, disrupted

historical forest dynamics. Consequently, Euro-American

settlement has led to a major shift in forest composition at

the regional scale, promoting a strong dominance of early

successional deciduous species. Climate change did not

seem to have an important influence on the compositional

changes that are documented in this study.

These results document the forest naturalness within

the region, and then provide results for forest management

and restoration. These results also help to create a baseline

for future climate-driven changes, which are predicted to

be quite dramatic in biogeographic transition zones

(Parmesan et al. 2005). Many forest landscapes such as

our study area are recovering frommajor land-use changes
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(Foley 2005; Rudel et al. 2005), which can control forest

dynamics much more than climate changes (Bodin et al.

2013; Abrams & Nowacki 2015; Nowacki & Abrams 2015).

Thus, land-use legacies could be considerable drivers of

future landscape changes and should be seriously consid-

ered when modelling and predicting future climate-driven

ecological changes.
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